Планирование эксперимента

Автор работы: Пользователь скрыл имя, 23 Марта 2014 в 16:06, контрольная работа

Краткое описание

1. История возникновения планирования эксперимента

Планирование эксперимента – продукт нашего времени, однако истоки его теряются в глубине веков.
Истоки планирования эксперимента уходят в глубокую древность и связаны с числовой мистикой, пророчествами и суевериями.
Это собственно не планирование физического эксперимента, а планирование числового эксперимента, т.е. расположение чисел так, чтобы выполнялись некоторые строгие условия, например, на равенство сумм по строкам, столбцам и диагоналям квадратной таблицы, клеточки которой заполнены числами натурального ряда.

Прикрепленные файлы: 1 файл

6.docx

— 40.95 Кб (Скачать документ)

Геометрическое представление функции отклика в факторном пространстве Х1, Х2, …, Хn называется поверхностью отклика (рис. 1).

Рис. 1. Поверхность отклика

 

Если исследуется влияние на Y лишь одного фактора Х1, то нахождение функции отклика – достаточно простая задача. Задавшись несколькими значениями этого фактора, в результате опытов получаем соответствующие значения Y и график Y =F(X) (рис. 2).

 

Рис. 2. Построение функции отклика одной переменной по опытным данным

 

По его виду можно подобрать математическое выражение функции отклика. Если мы не уверены, что опыты хорошо воспроизводятся, то обычно опыты повторяют несколько раз и получают зависимость с учетом разброса опытных данных.

Если факторов два, то необходимо провести опыты при разных соотношениях этих факторов. Полученную функцию отклика в 3х-мерном пространстве (рис. 1) можно анализировать, проводя ряд сечений с фиксированными значениями одного из факторов (рис. 3). Вычлененные графики сечений можно аппроксимировать совокупностью математических выражений.

 

Рис. 3. Сечения поверхности отклика при фиксированных откликах (а) и переменных (б, в)

 

При трех и более факторах задача становится практически неразрешимой. Если и будут найдены решения, то использовать совокупность выражений достаточно трудно, а часто и не реально.

 

2.3 Применение  математического планирования эксперимента  в научных исследованиях

 

В современной математической теории оптимального планирования эксперимента существует 2 основных раздела:

  1. планирование эксперимента для изучения механизмов сложных процессов и свойств многокомпонентных систем.

  1. планирование эксперимента для оптимизации технологических процессов и свойств многокомпонентных систем.

Планирование эксперимента – это выбор числа опытов и условий их проведения необходимых и достаточных для решения поставленной задачи с требуемой точностью.

Эксперимент, который ставится для решений задач оптимизации, называется экстремальным. Примерами задач оптимизации являются выбор оптимального состава многокомпонентных смесей, повышение производительности действующей установки, повышение качества продукции и снижение затрат на её получение. Прежде чем планировать эксперимент необходимо сформулировать цель исследования. От точной формулировки цели зависит успех исследования. Необходимо также удостовериться, что объект исследования соответствует предъявляемым ему требованиям. В технологическом исследовании целью исследования при оптимизации процесса чаще всего является повышение выхода продукта, улучшение качества, снижение себестоимости.

Эксперимент может проводиться непосредственно на объекте или на его модели. Модель отличается от объекта не только масштабом, а иногда природой. Если модель достаточно точно описывает объект, то эксперимент на объекте может быть перенесён на модель. Для описания понятия «объект исследования» можно использовать представление о кибернетической системе, которая носит название чёрный ящик.

 

Стрелки справа изображают численные характеристики целей исследования и называются выходными параметрами (y) или параметрами оптимизации.

Для проведения эксперимента необходимо воздействовать на поведение чёрного ящика. Все способы воздействия обозначаются через «x» и называются входными параметрами или факторами. Каждый фактор может принимать в опыте одно из нескольких значений, и такие значения называются уровнями. Фиксированный набор уровней и факторов определяет одно из возможных состояний чёрного ящика, одновременно они являются условиями проведения одного из возможных опытов. Результаты эксперимента используются для получения математической модели объекта исследования. Использование для объекта всех возможных опытов приводит к абсурдно большим экспериментам. В связи с этим эксперименты необходимо планировать.

Задачей планирования является выбор необходимых для эксперимента опытов, методов математической обработки их результатов и принятия решений. Частный случай этой задачи – планирование экстремального эксперимента. То есть эксперимента поставленного с целью поиска оптимальных условий функционирования объекта. Таким образом, планирование экстремального эксперимента – это выбор количества и условий проведения опытов, минимально необходимых для отыскания оптимальных условий. При планировании эксперимента объект исследования должен обладать обязательными свойствами:

1. управляемым

2. результаты эксперимента  должны быть воспроизводимыми.

Эксперимент называется воспроизводимым, если при фиксированных условиях опыта получается один и тот же выход в пределах заданной относительно небольшой ошибки эксперимента (2%-5%). Эксперимент проводят при выборе некоторых уровней для всех факторов, затем он повторяется через неравные промежутки времени. И значения параметров оптимизации сравниваются. Разброс этих параметров характеризует воспроизводимость результатов. Если он не превышает заранее заданной величины, то объект удовлетворяет требованию воспроизводимости результатов.

При планировании эксперимента активное вмешательство предполагает процесс и возможность выбора в каждом опыте тех факторов, которые представляют интерес. Экспериментальное исследование влияния входных параметров (факторов) на выходные может производиться методом пассивного или активного эксперимента. Если эксперимент сводится к получению результатов наблюдения за поведение системы при случайных изменениях входных параметров, то он называется пассивным. Если же при проведении эксперимента входные параметры изменяются по заранее заданному плану, то такой эксперимент называется активным. Объект, на котором возможен активный эксперимент, называется управляемым. На практике не существует абсолютно управляемых объектов. На реальный объект обычно действуют как управляемый, так и неуправляемый факторы. Неуправляемые факторы действуют на воспроизводимость эксперимента. Если все факторы неуправляемы, возникает задача установления связи между параметром оптимизации и факторами по результатам наблюдений или по результатам пассивного эксперимента. Возможна также плохая воспроизводимость изменения факторов во времени.

 

3. Параметры оптимизации

 

3.1 Виды параметров  оптимизации

 

Параметр оптимизации – это признак, по которому мы хотим оптимизировать процесс. Он должен быть количественным, задаваться числом. Множество значений, которые может принимать параметр оптимизации, называется областью его определения. Области определения могут быть непрерывными и дискретными, ограниченными и неограниченными. Например, выход реакции – это параметр оптимизации с непрерывной ограниченной областью определения. Он может изменяться в интервале от 0 до 100%. Число бракованных изделий, число кровяных телец в пробе крови – вот примеры параметров с дискретной областью определения, ограниченной снизу.

В зависимости от объекта и цели исследования параметры оптимизации могут быть весьма разнообразными (рис. 1).

Прокомментируем некоторые элементы схемы. Экономические параметры оптимизации, такие, как прибыль, себестоимость и рентабельность, обычно используются при исследовании действующих промышленных объектов, тогда как затраты на эксперимент имеет смысл оценивать в любых исследованиях, в том числе и лабораторных. Если цена опытов одинакова, затраты на эксперимент» пропорциональны числу опытов, которые необходимо поставить для решения данной задачи. Это в значительной мере определяет выбор плана эксперимента.

Среди технико-экономических параметров наибольшее распространение имеет производительность. Такие параметры, как долговечность, надежность и стабильность, связаны с длительными наблюдениями. Имеется некоторый опыт их использования при изучении дорогостоящих ответственных объектов, например радиоэлектронной аппаратуры.

Почти во всех исследованиях приходится учитывать количество и качество получаемого продукта. Как меру количества продукта используют выход, например, процент выхода готовой продукции.

Показатели качества чрезвычайно разнообразны. В нашей схеме они сгруппированы по видам свойств. Характеристики количества и качества продукта образуют группу технико-технологических параметров.

В группе «прочие» сгруппированы различные параметры, которые реже встречаются, но не являются менее важными. Сюда попали статистические параметры, используемые для улучшения характеристик случайных величин или случайных функций.

 

3.2 Требования  к параметру оптимизации

 

Параметр оптимизации – это признак, по которому мы хотим оптимизировать процесс. Он должен быть количественным, задаваться числом. Мы должны уметь его измерять при любой возможной комбинации выбранных уровней факторов. Множество значений, которые может принимать параметр оптимизации, будем называть областью его определения. Области определения могут быть непрерывными и дискретными, ограниченными и неограниченными. Например, выход реакции – это параметр оптимизации с непрерывной ограниченной областью определения. Он может изменяться в интервале от 0 до 100%. Число бракованных изделий, число зерен на шлифе сплава, число кровяных телец в пробе крови – вот примеры параметров с дискретной областью определения, ограниченной снизу.

Уметь измерять параметр оптимизации – это значит располагать подходящим прибором. В ряде случаев такого прибора может не существовать или он слишком дорог. Если нет способа количественного измерения результата, то приходится воспользоваться приемом, называемым ранжированием (ранговым подходом). При этом параметрам оптимизации присваиваются оценки – ранги по заранее выбранной шкале: двухбалльной, пятибалльной и т.д. Ранговый параметр имеет дискретную ограниченную область определения. В простейшем случае область содержит два значения (да, нет; хорошо, плохо). Это может соответствовать, например, годной продукции и браку.

Ранг – это количественная оценка параметра оптимизации, но она носит условный (субъективный) характер. Мы ставим в соответствие качественному признаку некоторое число – ранг. Для каждого физически измеряемого параметра оптимизации можно построить ранговый аналог. Потребность в построении такого аналога возникает, если имеющиеся в распоряжении исследователя численные характеристики неточны или неизвестен способ построения удовлетворительных численных оценок. При прочих равных условиях всегда нужно отдавать предпочтение физическому измерению, так как ранговый подход менее чувствителен и с его помощью трудно изучать тонкие эффекты.

Пример: Технолог разработал новый вид продукта. Вам необходимо оптимизировать этот процесс.

Цель процесса – получение вкусного продукта, но такая формулировка цели еще не дает возможности приступить к оптимизации: необходимо выбрать количественный критерий, характеризующий степень достижения цели. Можно принять следующее решение: очень вкусный продукт получает отметку 5, просто вкусный продукт – отметку 4 и т.д.

Можно ли после такого решения переходить к оптимизации процесса? Нам важно количественно оценить результат оптимизации. Решает ли отметка эту задачу? Конечно, потому что, как мы договорились, отметка 5 соответствует очень вкусному продукту и т.д. Другое дело, что этот подход, называемый ранговым, часто оказывается грубым, нечувствительным. Но возможности такой количественной оценки результатов не должна вызывать сомнений.

Следующее требование: параметр оптимизации должен выражаться одним числом. Например: регистрация показания прибора.

Еще одно требование, связанное с количественной природой параметра оптимизации, – однозначность в статистическом смысле. Заданному набору значений факторов должно соответствовать одно с точностью до ошибки эксперимента значение параметра оптимизации. (Однако обратное неверно: одному и тому же значению параметра могут соответствовать разные наборы значений факторов.)

Для успешного достижения цели исследования необходимо, чтобы параметр оптимизации действительно оценивал эффективность функционирования системы в заранее выбранном смысле. Это требование является главным, определяющим корректность постановки задачи.

Представление об эффективности не остается постоянным в ходе исследования. Оно меняется по мере накопления информации и в зависимости от достигнутых результатов. Это приводит к последовательному подходу при выборе параметра оптимизации. Так, например, на первых стадиях исследования технологических процессов в качестве параметра оптимизации часто используется выход продукта. Однако в дальнейшем, когда возможность повышения выхода исчерпана, нас начинают интересовать такие параметры, как себестоимость, чистота продукта и т.д.

Говоря об оценке эффективности функционирования системы, важно помнить, что речь идет о системе в целом. Часто система состоит из ряда подсистем, каждая из которых может оцениваться своим локальным параметром оптимизации.

Следующее требование к параметру оптимизации – требование универсальности или полноты. Под универсальностью параметра оптимизации понимается его способность всесторонне характеризовать объект. В частности, технологические параметры оптимизации недостаточно универсальны: они не учитывают экономику. Универсальностью обладают, например, обобщенные параметры оптимизации, которые строятся как функции от нескольких частных параметров.

Желательно, чтобы параметр оптимизации имел физический смысл, был простым и легко вычисляемым.

Требование физического смысла связано с последующей интерпретацией результатов эксперимента.

Таким образом, параметр оптимизации должен быть:

– эффективным с точки зрения достижения цели;

– универсальным;

– количественным и выражаться одним числом;

– статистически эффективным;

– имеющим физический смысл, простым и легко вычисляемым.

В тех случаях, когда возникают трудности с количественной оценкой параметров оптимизации, приходится обращаться к ранговому подходу. В ходе исследования могут меняться априорные представления об объекте исследования, что приводит к последовательному подходу при выборе параметра оптимизации.

Из многих параметров, характеризующих объект исследования, только один, часто обобщенный, может служить параметром оптимизации. Остальные рассматриваются как ограничения.

 

4. Факторы оптимизации

 

4.1 Определение  фактора

 

Фактором называется измеряемая переменная величина, принимающая в некоторый момент времени определенное значение. Факторы соответствуют способам воздействия на объект исследования.

Так же, как и параметр оптимизации, каждый фактор имеет область определения. Фактор считают заданным, если вместе с его названием указана область его определения.

Под областью определения понимается совокупность всех значений, которые в принципе может принимать данный фактор.

Информация о работе Планирование эксперимента