Автор работы: Пользователь скрыл имя, 11 Сентября 2013 в 20:19, реферат
В результате измерения физических величин (время, площадь, объем, масса, скорость и т.д.) определяются их числовые значения. Математика занимается величинами, отвлекаясь от их конкретного содержания. В дальнейшем, говоря о величинах, мы будем иметь в виду их числовые значения. В различных явлениях некоторые величины изменяются, а другие сохраняют свое числовое значение. Например, при равномерном движении точки время и расстояние меняются, а скорость остается постоянной.
Переменной величиной называется величина, которая принимает различные числовые значения. Величина, числовые значения которой не меняются, называется постоянной. Переменные величины будем обозначать буквами x, y, z,…, постоянные – a, b, c,…
ПЕРЕМЕННЫЕ И ПОСТОЯННЫЕ ВЕЛИЧИНЫ
В результате измерения физических величин (время, площадь, объем, масса, скорость и т.д.) определяются их числовые значения. Математика занимается величинами, отвлекаясь от их конкретного содержания. В дальнейшем, говоря о величинах, мы будем иметь в виду их числовые значения. В различных явлениях некоторые величины изменяются, а другие сохраняют свое числовое значение. Например, при равномерном движении точки время и расстояние меняются, а скорость остается постоянной.
Переменной величиной называетс
Заметим, что в математике постоянная величина часто рассматривается как частный случай переменной, у которой все числовые значения одинаковы.
Областью изменения переменной величины называется совокупность всех принимаемых ею числовых значений. Область изменения может состоять как из одного или нескольких промежутков, так и из одной точки.
УПОРЯДОЧЕННАЯ ПЕРЕМЕННАЯ ВЕЛИЧИНА. ЧИСЛОВАЯ ПОСЛЕДОВАТЕЛЬНОСТЬ
Будем говорить, что переменная x есть упорядоч
Частным случаем упорядоченной
переменной величины является переменная
величина, значения которой образуют числовую последовательность x1,x2,…,xn,
Например, числовую последовательность образуют следующие величины:
ФУНКЦИЯ
При изучении различных явлений природы и решении технических задач, а, следовательно, и в математике приходится рассматривать изменение одной величины в зависимости от изменения другой. Так, например, известно, что площадь круга выражается через радиус формулой S = πr2. Если радиус r принимает различные числовые значения, то площадь S также принимает различные числовые значения, т.е. изменение одной переменной влечет изменение другой.
Если каждому значению
переменной x, принадлежащему
некоторой области, соответствует одно
определенное значение другой переменной y, то y называется функцией переменной х.
Символически будем записывать y=f(x). При этом
переменная x называется незави
Запись y=C, где C – постоянная, обозначает функцию, значение которой при любом значении x одно и то же и равно C.
Множество значений x, для которых можно определить значения функции y по правилу f(x), называется областью определения функции.
Заметим, что числовая последовательность также является функцией, область определения которой совпадает с множеством натуральных чисел.
К основным элементарным функциям относятся все функции, изучаемые в школьном курсе математики:
Элементарной функцией называется функция, которая может быть задана основными элементарными функциями и постоянными при помощи конечного числа операций сложения, вычитания, умножения, деления и взятия функции от функции.
ПОНЯТИЕ ПРЕДЕЛА ЧИСЛОВОЙ ПОСЛЕДОВАТЕЛЬНОСТИ
В дальнейшем курсе математики понятие предела будет играть фундаментальную роль, так как с ним непосредственно связаны основные понятия математического анализа – производная, интеграл и др.
Начнем с понятия предела числовой последовательности.
Число a называется пределом по
Если число a есть предел последовательности x = {xn}, то говорят, что xn стремится к a, и пишут .
Чтобы сформулировать это определение в геометрических терминах введем следующее понятие.
Окрестностью
точки x0 называется произвольный интервал
(a, b), содержащий
эту точку внутри себя. Часто рассматривается
окрестность точки x0, для
которой x0 является
серединой, тогда x0 называется центром ок
Итак, выясним, что же означает геометрически понятие предела числовой последовательности. Для этого запишем последнее неравенство из определения в виде
Это неравенство означает, что все элементы последовательности с номерами n>N должны лежать в интервале (a – ε; a + ε).
Следовательно, постоянное число a есть предел числовой последовательности {xn}, если для любой малой окрестности с центром в точке a радиуса ε (ε – окрестности точки a) найдется такой элемент последовательности с номером N, что все последующие элементыс номерами n>N будут находиться внутри этой окрестности.
Примеры.
Докажем, что предел этой числовой последовательности равен 1. Возьмем произвольное положительное число ε. Нам нужно найти такое натуральное число N, что при всех n>Nвыполняется неравенство |xn - 1| < ε. Действительно, т.к.
,
то для выполнения соотношения |xn - a| < ε достаточно, чтобы или . Поэтому, взяв в качестве N любое натуральное число, удовлетворяющее неравенству , получим что нужно. Так если взять, например, , то, положив N=6, для всех n>6 будем иметь .
Возьмем произвольное ε > 0. Рассмотрим
.
Тогда , если или , т.е. . Поэтому выберем любое натуральное число, удовлетворяющее неравенству .
Сделаем несколько замечаний.
Замечание 1. Очевидно, что если все элементы числовой последовательности принимают одно и то же постоянное значение xn = c, то предел этой последовательности будет равен самой постоянной. Действительно, при любом ε всегда выполняется неравенство |xn - c| = |c - c| = 0 < ε.
Замечание 2. Из определения предела следует, что последовательность не может иметь двух пределов. Действительно, предположим, что xn → a и одновременно xn → b. Возьмем любое и отметим окрестности точек a и b радиуса ε (см. рис.). Тогда по определению предела, все элементы последовательности, начиная с некоторого, должны находиться как в окрестности точки а, так и в окрестности точки b, что невозможно.
Замечание 3. Не следует думать, что каждая числовая последовательность имеет предел. Пусть, например, переменная величина принимает значения . Несложно заметить, что эта последовательность не стремится ни к какому пределу.
ПРЕДЕЛ ФУНКЦИИ Пусть функция y=f(x) определена в некоторой окрестности точки a. Предположим, что независимая переменная x неограниченно приближается к числу a. Это означает, что мы можем придавать х значения сколь угодно близкие к a, но не равные a. Будем обозначать это так x → a. Для таких xнайдем соответствующие значения функции. Может случиться, что значения f(x) также неограниченно приближаются к некоторому числу b.Тогда говорят, что число b есть предел функции f(x) при x → a. Введем строгое определение предела функции. Функция y=f(x) стремится к пределу b при x → a, если для каждого положительного числа ε, как бы мало оно не было, можно указать такое положительное число δ, что при всех x ≠ a из области определения функции, удовлетворяющих неравенству |x - a| < δ, имеет место неравенство |f(x) - b| < ε. Если b есть предел функции f(x) при x → a, то пишут или f(x) → b при x → a. Проиллюстрируем это определение на графике функции. Т.к. из неравенства |x - a| < δ должно следовать неравенство |f(x) - b| < ε, т.е. при x Î (a - δ, a + δ) соответствующие значения функции f(x) Î (b - ε, b + ε), то, взяв произвольное ε > 0, мы можем подобрать такое число δ, что для всех точекx, лежащих в δ – окрестности точки a, соответствующие точки графика функции должны лежать внутри полосы шириной 2ε, ограниченной прямыми y = b – ε и y = b + ε. Несложно заметить, что предел функции должен обладать теми же свойствами, что и предел числовой последовательности, а именно и если при x → a функция имеет предел, то он единственный. Примеры.
Используя график заданной функции, несложно заметить, . |
|
ПОНЯТИЕ ПРЕДЕЛА ФУНКЦИИ
В БЕСКОНЕЧНО УДАЛЕННОЙ ТОЧКЕ
До сих пор мы рассматривали пределы для случая, когда переменная величина x стремилась к определенному постоянному числу.
Будем говорить, что переменная x стремится к бесконечности, если для каждого заранее заданного положительного числа M (оно может быть сколь угодно большим) можно указать такое значение х=х0, начиная с которого, все последующие значения переменной будут удовлетворять неравенству |x|>M.
Например, пусть переменная х принимает значения x1= –1, x2=2, x3= –3, …, xn=(–1)nn, … Ясно, что это бесконечно большая переменная величина, так как при всех M > 0 все значения переменной, начиная с некоторого, по абсолютной величине будут больше M.
Переменная величина x → +∞, если при произвольном M > 0 все последующие значения переменной, начиная с некоторого, удовлетворяют неравенству x > M.
Аналогично, x → – ∞, если при любом M > 0 x < -M.
Будем говорить, что функция f(x) стремится к пределу b при x → ∞, если для произвольного малого положительного числа ε можно указать такое положительное число M, что для всех значений x, удовлетворяющих неравенству |x|>M, выполняется неравенство |f(x) - b| < ε.
Обозначают .
Примеры.
Нужно доказать, что при произвольном
ε будет выполняться
БЕСКОНЕЧНО БОЛЬШИЕ ФУНКЦИИ
Ранее мы рассмотрели случаи, когда функция f(x) стремилась к некоторому конечному пределу b при x → a или x → ∞.
Рассмотрим теперь случай, когда функция y=f(x) стремится к бесконечности при некотором способе изменения аргумента.
Функция f(x) стремится к бесконечности при x → a, т.е. является бесконечно большой величиной, если для любого числа М, как бы велико оно ни было, можно найти такое δ > 0, что для всех значений х≠a, удовлетворяющих условию |x-a| < δ, имеет место неравенство |f(x)| > M.
Если f(x) стремится к бесконечности при x→a, то пишут или f(x)→∞ при x→a.
Сформулируйте аналогичное определение для случая, когда x→∞.
Если f(x) стремится к бесконечности при x→a и при этом принимает только положительные или только отрицательные значения, соответственно пишут или .
Примеры.
ОГРАНИЧЕННЫЕ ФУНКЦИИ
Пусть задана функция y=f(x), определенная на некотором множестве D значений аргумента.
Функция y=f(x) называется огра
Примеры.
Функция y=f(x) называется огра
Функция y=f(x) называется огра
Установим связь между ограниченной функцией и функцией, имеющей предел.
Теорема 1. Если и b – конечное число, то функция f(x) ограничена при x→a.
Доказательство. Т.к. , то при любом ε>0 найдется такое число δ>0, что при вех значениях х, удовлетворяющих неравенству |x-a|<δ, выполняется неравенство |f(x) –b|<ε. Воспользовавшись свойством модуля |f(x) – b|≥|f(x)| - |b|, последнее неравенство запишем в виде |f(x)|<|b|+ ε. Таким образом, если положить M=|b|+ ε, то при x→a |f(x)|<M.
Замечание. Из определения ограниченной функции следует, что если , то она является неограниченной. Однако обратное неверно: неограниченная функция может не быть бесконечно большой. Приведите пример.
Теорема 2. Если , то функция y=1/f(x) ограничена при x→a.
Доказательство. Из условия теоремы следует, что при произвольном ε>0 в некоторой окрестности точки a имеем |f(x) – b|<ε. Т.к. |f(x) – b|=|b – f(x)| ≥|b| - |f(x)|, то |b| - |f(x)|< ε. Следовательно, |f(x)|>|b| - ε >0. Поэтому и .