Автор работы: Пользователь скрыл имя, 04 Ноября 2013 в 18:43, реферат
Пусть функция определена на отрезке , . Выполним следующие операции:
разобьем отрезок точками на n частичных отрезков ;
в каждом из частичных отрезков , выберем произвольную точку и вычислим значение функции в этой точке ;
I. ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ
1. Понятие определенного интеграла……………………………………….…..3
2. Геометрический смысл определенного интеграла…………………….…….5
3. Основные свойства определенного интеграла……………………….………6
4. Формула Ньютона–Лейбница…………………………………………………7
5. Замена переменной в определенном интеграле……………………………...9
6. Интегрирование по частям……………………………………………………11
II. ПРИМЕНЕНИЕ ОПРЕДЕЛЕННЫХ ИНТЕГРАЛОВ. НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ
1. Площадь криволинейной трапеции…………………………………………13
2. Объем тела вращения…………………………………………………………19
3. Длина дуги плоской кривой………………………………………………….22
4. Несобственные интегралы с бесконечными пределами интегрирования..24
5. Несобственные интегралы от неограниченных функций………………….27
Литература…………………………………………………………………..........29
Решение. Данная фигура изображена на рис. 7. Площадь ее вычислим по формуле (8). Решая систему уравнений находим , ; следовательно, , . На отрезке имеем: . Значит, в формуле (8) в качестве возьмем x, а в качестве – . Получим:
(кв. ед.).
Более сложные задачи на вычисление площадей решают путем разбиения фигуры на непересекающиеся части и вычисления площади всей фигуры как суммы площадей этих частей.
Рис. 7
Пример 12. Найти площадь фигуры, ограниченной линиями , , .
Решение. Сделаем чертеж (рис. 8). Данную фигуру можно рассматривать как криволинейную трапецию, ограниченную снизу осью , слева и справа – прямыми и , сверху – графиками функций и . Так как фигура ограничена сверху графиками двух функций, то для вычисления ее площади разобьем данную фигуру прямой на две части (1 – это абсцисса точки пересечения линий и ). Площадь каждой из этих частей находим по формуле (4):
(кв. ед.); (кв. ед.). Следовательно:
(кв. ед.).
Рис. 8
Рис. 9
В заключение отметим, что если криволинейная трапеция ограничена прямыми и , осью и непрерывной на кривой (рис. 9), то ее площадь находится по формуле
.
Пусть криволинейная трапеция, ограниченная графиком непрерывной на отрезке функции , осью , прямыми и , вращается вокруг оси (рис. 10). Тогда объем полученного тела вращения вычисляется по формуле
. (9)
Пример 13. Вычислить объем тела, полученного вращением вокруг оси криволинейной трапеции, ограниченной гиперболой , прямыми , и осью .
Решение. Сделаем чертеж (рис. 11).
Из условия задачи следует, что , . По формуле (9) получаем
.
Рис. 10
Рис. 11
Объем тела, полученного вращением вокруг оси Оу криволинейной трапеции, ограниченной прямыми у = с и у = d, осью Оу и графиком непрерывной на отрезке функции (рис. 12), определяется по формуле
. (10)
Рис. 12
Пример 14. Вычислить объем тела, полученного вращением вокруг оси Оу криволинейной трапеции, ограниченной линиями х2 = 4у, у = 4, х = 0 (рис. 13).
Решение. В соответствии с условием задачи находим пределы интегрирования: , . По формуле (10) получаем:
.
Рис. 13
Пусть кривая , заданная уравнением , где , лежит в плоскости (рис. 14).
Рис. 14
Определение. Под длиной дуги понимается предел, к которому стремится длина ломаной линии, вписанной в эту дугу, когда число звеньев ломаной стремится к бесконечности, а длина наибольшего звена стремится к нулю.
Если функция и ее производная непрерывны на отрезке , то длина дуги кривой вычисляется по формуле
. (11)
Пример 15. Вычислить длину дуги кривой , заключенной между точками, для которых .
Решение. Из условия задачи имеем . По формуле (11) получаем:
.
При введении понятия определённого интеграла предполагалось, что выполняются следующие два условия:
а) пределы интегрирования а и являются конечными;
б) подынтегральная функция ограничена на отрезке .
Если хотя бы одно из этих условий не выполняется, то интеграл называется несобственным.
Рассмотрим вначале
несобственные интегралы с
Определение. Пусть функция определена и непрерывна на промежутке , тогда
(12)
называется несобственным интегралом с бесконечным верхним пределом интегрирования (несобственным интегралом I рода).
Если существует и конечен, то несобственный интеграл называется сходящимся; если данный предел не существует или равен , то несобственный интеграл называется расходящимся.
Геометрически несобственный интеграл от неотрицательной функции выражает площадь бесконечной криволинейной трапеции, ограниченной сверху графиком функции , снизу – осью , слева – отрезком прямой и неограниченной справа (рис. 15).
Если несобственный интеграл сходится, то эта площадь является конечной; если несобственный интеграл расходится, то эта площадь бесконечна.
Рис. 15
Аналогично определяется несобственный интеграл с бесконечным нижним пределом интегрирования:
. (13)
Этот интеграл сходится, если предел в правой части равенства (13) существует и конечен; в противном случае интеграл называется расходящимся.
Несобственный интеграл с двумя бесконечными пределами интегрирования определяется следующим образом:
, (14)
где с – любая точка интервала . Интеграл сходится только в том случае, когда сходятся оба интеграла в правой части равенства (14).
Пример 16. Исследовать на сходимость несобственные интегралы:
а) ; б) ; в) ; г) .
Решение. а) , следовательно, данный интеграл расходится;
б)
. Так как при предел не существует, то интеграл расходится;
в)
Значит, несобственный интеграл сходится и его значение равно ;
г) = [выделим в знаменателе полный квадрат: ] = [замена:
] =
Значит, несобственный интеграл сходится и его значение равно .
Пусть функция непрерывна на конечном промежутке , но не ограничена на этом промежутке.
Определение. Несобственным интегралом от функции у=f(x) на промежутке называется предел , т.е.
. (15)
Если предел, стоящий в правой части равенства (15) существует и конечен, то несобственный интеграл называется сходящимся, в противном случае – расходящимся.
Интеграл (15) иногда называют несобственным интегралом второго рода.
Аналогично вводится понятие несобственного интеграла от функции непрерывной, но не ограниченной на промежутке :
. (16)
Если функция не ограничена при , где , и непрерывна при и , то несобственный интеграл от функции у=f(x) на отрезке обозначается и определяется равенством
. (17)
Несобственный
интеграл (17) называется сходящимся, если
сходятся оба несобственных
интеграла в правой части равенства (17).
В противном случае данный интеграл называется
расходящимся.
Пример 17. Исследовать на сходимость несобственные интегралы:
а) ; б) .
Решение:
а) данный интеграл является интегралом от неограниченной функции (подынтегральная функция не определена в точке , при эта функция неограниченно возрастает).
По определению имеем
[замена: ] = , следовательно, данный интеграл сходится.
б) по определению
.
Значит, данный интеграл является расходящимся.
Литература
1. Ильин В.А., Позняк Э.Г. Основы математического анализа. Ч. I. – М.: Наука, 1982. – 616 с.
2. Гусак А.А. Математический анализ и дифференциальные уравнения. – Мн.: ТетраСистемс, 1998. – 416 с.
3. Гусак А.А. Высшая математика: Учеб. пособие для студентов вузов: В 2 т. – Мн., 1998. – 544 с. (1 т.), 448 с. (2 т.).
4. Кремер Н.Ш., Путко Б.А., Тришин И.М., Фридман М.Н. Высшая математика для экономистов: Учебник для вузов / Под ред. проф. Н.Ш. Кремера. – М.: ЮНИТИ, 2002. – 471 с.
5. Яблонский А.И., Кузнецов А.В., Шилкина Е.И. и др. Высшая математика. Общий курс: Учебник / Под общей ред. С.А. Самаля. – Мн.: Выш. шк., 2000. – 351 с.