Автор работы: Пользователь скрыл имя, 07 Июня 2012 в 11:20, реферат
Задачи дискретной математики, к которым относится большинство олимпиадных задач по информатике, часто сводятся к перебору различных комбинаторных конфигураций объектов и выбору среди них наилучшего, с точки зрения условия той или иной задачи. Поэтому знание алгоритмов генерации наиболее распространенных комбинаторных конфигураций является необходимым условием успешного решения олимпиадных задач в целом.
1. Введение.......................................................................................................3
2. Предмет комбинаторики..................................................................................4
3. Краткая историческая справка........................................................................6
4. Основные комбинаторные задачи...................................................................7
5. Основные функции комбинаторики................................................................9
6. Правило суммы................................................................................................10
7. Правило произведения..................................................................................12
8. Заключение.....................................................................................................17
9. Список литературы........................................................................................18
Pn
(n1, n2, ...) = n! / (n1! n2!
... ),
где n1 + n2 + ... = n.
При решении задач комбинаторики используют следующие правила:
Если некоторый объект А может быть выбран из совокупности объектов m способами, а другой объект В может быть выбран n способами, то выбрать либо А, либо В можно m + n способами.
Суммой А + В двух событий А и В называют событие, состоящее в появлении события А, или события В, или обоих этих событий. Например, если из орудия произведены два выстрела и А — попадание при первом выстреле, В — попадание при втором выстреле, то А + В — попадание при первом выстреле, или при втором, или в обоих выстрелах.
В частности, если два события А и B — несовместные, то А + В — событие, состоящее в появлении одного из этих событий, безразлично какого.
Суммой нескольких событий называют событие, которое состоит в появлении хотя бы одного из этих событий. Например, событие А + В + С состоит в появлении одного из следующих событий: А, В, С, А и В, А и С, В и С, А и В и С.
Пусть события A и В — несовместные, причем вероятности этих событий известны. Как найти вероятность того, что наступит либо событие A, либо событие В? Ответ на этот вопрос дает теорема сложения.
Теорема. Вероятность появления одного из двух несовместных событий, безразлично какого, равна сумме вероятностей этих событий:
Р (А + В) = Р (А) + Р (В).
Доказательство:
Введем обозначения: n — общее число возможных элементарных исходов испытания; m1 — число исходов, благоприятствующих событию A; m2— число исходов, благоприятствующих событию В.
Число элементарных исходов, благоприятствующих наступлению либо события А, либо события В, равно m1 + m2. Следовательно,
Р
(A + В) = (m1 + m2) / n = m1 / n +
m2 / n.
Приняв во внимание, что m1 / n = Р (А) и m2 / n = Р (В), окончательно получим
Р
(А + В) = Р (А) + Р (В).
С л е д с т в и е. Вероятность появления одного из нескольких попарно несовместных событий, безразлично какого, равна сумме вероятностей этих событий:
Р (A1 + A2 + ... + An) = Р (A1) + Р (A2) + ... + Р (An).
Доказательство:
Рассмотрим
три события: А, В и С. Так как
рассматриваемые события
Р
( А + В + С) = Р [(А + В) + С] = Р (А + В) + Р (С) = Р
(А) + Р (В) + Р (С).
Для произвольного числа попарно несовместных событий доказательство проводится методом математической индукции.
Полная группа событий.
Теорема Сумма вероятностей событий А1 , А2 , ..., Аn , образующих полную группу, равна единице:
Р (A1) + Р (А2) + ... + Р (Аn) = 1.
Доказательство:
Так как появление одного из событий полной группы достоверно, а вероятность достоверного события равна единице, то
Р (A1 + A2 + ... + An) = 1. (*)
Любые
два события полной группы несовместны,
поэтому можно применить
Р
(А1 + А2 + ... + Аn) = Р (A1)
+ Р (A2) + ... + Р (Аn). (**)
Сравнивая (*) и (**), получим
Р
(А1) + Р (А2) + ... + Р (Аn) =
1.
Противоположные события.
Противоположными называют два единственно возможных события, образующих полную группу. Если одно из двух противоположных событий обозначено через A, то другое принято обозначать
Теорема. Сумма вероятностей противоположных событий равна единице:
.
Доказательство базируется на том, что противоположные события образуют полную группу, а сумма вероятностей событий, образующих полную группу, равна единице (см. Теорему о полной группе событий).
З а м е ч а н и е 1. Если вероятность одного из двух противоположных событий обозначена через р, то вероятность другого события обозначают через q. Таким образом, в силу предыдущей теоремы
p + q = l
З а м е ч а н и е 2. При решении задач на отыскание вероятности события А часто выгодно сначала вычислить вероятность противоположного события, а затем найти искомую вероятность по формуле
Если объект А можно выбрать из совокупности объектов m способами и после каждого такого выбора объект В можно выбрать n способами, то пара объектов (А, В) в указанном порядке может быть выбрана mn способами.
Произведение событий. Произведением двух событий А и В называют событие АВ, состоящее в совместном появлении (совмещении) этих событий. Например, если А — деталь годная, В — деталь окрашенная, то АВ — деталь годна и окрашена.
Произведением нескольких событий называют событие, состоящее в совместном появлении всех этих событий. Например, если А, В, С — появление «герба» соответственно в первом, втором и третьем бросаниях монеты, то АВС — выпадение «герба» во всех трех испытаниях.
Условная вероятность. Во введении случайное событие определено как событие, которое при осуществлении совокупности условий S может произойти или не произойти. Если при вычислении вероятности события никаких других ограничений, кроме условий S, не налагается, то такую вероятность называют безусловной; если же налагаются и другие дополнительные условия, то вероятность события называют условной. Например, часто вычисляют вероятность события В при дополнительном условии, что произошло событие А. Заметим, что и безусловная вероятность, строго говоря, является условной, поскольку предполагается осуществление условий S.
Условной вероятностью РA (В) называют вероятность события В, вычисленную в предположении, что событие А уже наступило.
Исходя
из классического определения
Условная вероятность события В при условии, что событие А уже наступило, по определению, равна
РA
(В) = Р (АВ) / Р (А) (Р(A)>0).
Рассмотрим два события: А и В; пусть вероятности Р (А) и РA (В) известны. Как найти вероятность совмещения этих событий, т. е. вероятность того, что появится и событие А и событие В? Ответ на этот вопрос дает теорема умножения.
Теорема. Вероятность совместного появления двух событий равна произведению вероятности одного из них на условную вероятность другого, вычисленную в предположении, что первое событие уже наступило:
Р (АВ) = Р (А) РA (В). (*)
Доказательство:
По определению условной вероятности,
РA
(B) = Р (АВ) / Р (A).
Отсюда
Р (АВ) = Р (А) РA (В).
З а м е ч ан и е. Применив формулу (*) к событию ВА, получим
Р (ВА) = Р (В) РB (А),
или, поскольку событие ВА не отличается от события АВ,
Р(АВ)
= Р (В) РB (А). (**)
Сравнивая формулы (*) и (**), заключаем о справедливости равенства
Р (А) РA (В) = Р (В) РB (А). (***)
С л е д с т в и е. Вероятность совместного появления нескольких событий равна произведению вероятности одного из них на условные вероятности всех остальных, причем вероятность каждого последующего события вычисляется в предположении, что все предыдущие события уже появились:
где
является вероятностью события An, вычисленной в предположении, что события А1,А2,..., Аn — 1 наступили. В частности, для трех событий
Р
(AВС) = Р (А) РA (В) РAB (С).
Заметим, что порядок, в котором расположены события, может быть выбран любым, т. е. безразлично какое событие считать первым, вторым и т. д.
Пусть вероятность события В не зависит от появления события А.
Событие В называют независимым от события А, если появление события А не изменяет вероятности события В, т. е. если условная вероятность события В равна его безусловной вероятности:
РA
(В) = Р (В). (*)
Подставив (*) в соотношение (***) предыдущего параграфа, получим
Р
(A) Р (В) = Р (В) РB (A).
Отсюда
РB
(A) = Р (A),
т. е. условная вероятность события A в предположении что наступило событие В, равна его безусловной вероятности. Другими словами, событие A не зависит от события В.
Итак, если событие В не зависит от события A, то событие A не зависит от события В; это означает, что с в о й с т в о н е з а в и с и м о с т и с о б ы т и й в з а и м н о.
Для независимых событий теорема умножения Р (АВ) = Р (А) РA (В) имеет вид
Р
(АВ) = Р (А) Р (В), (**)
т.
е. вероятность совместного
Равенство (**) принимают в качестве определения независимых событий.
Два события называют независимыми, если вероятность их совмещения равна произведению вероятностей этих событий; в противном случае события называют зависимыми.
На практике о независимости событий заключают по смыслу задачи. Например, вероятности поражения цели каждым из двух орудий не зависят от того, поразило ли цель другое орудие, поэтому события «первое орудие поразило цель» и «второе орудие поразило цель» независимы.
З а м е ч а н и е 1. Если события А и В независимы, то независимы также события
Действительно,
Следовательно,
Отсюда
т.
е. события А и В независимы.
Независимость событий
является следствием доказанного утверждения.
Несколько событий называют попарно независимыми, если каждые два из них независимы. Например, события А, В, С попарно независимы, если независимы события А и В, А и С, В и С.
Для того чтобы обобщить теорему умножения на несколько событий, введем понятие независимости событий в совокупности.
Несколько событий называют независимыми в совокупности (или просто независимыми), если независимы каждые два из них и независимы каждое событие и все возможные произведения остальных. Например, если события A1, A2, А3, независимы в совокупности, то независимы события A1 и А2, А1 и А3, А2 и A3; А1 и A2A3, A2 и A1A3, А3 и A1A2. Из сказанного следует, что если события независимы в совокупности, то условная вероятность появления любого события из них, вычисленная в предположении, что наступили какие-либо другие события из числа остальных, равна его безусловной вероятности.
Подчеркнем, что если несколько событий независимы попарно, то отсюда еще не следует их независимость в совокупности. В этом смысле требование независимости событий в совокупности сильнее требования их попарной независимости.