Автор работы: Пользователь скрыл имя, 06 Ноября 2012 в 21:31, доклад
Определение. Кольцом называется алгебра К = ‹К, +, -, ·, 1› типа (2, 1, 2, 0), главные операции которой удовлетворяют следующим условиям:
алгебра ‹К, +, -› есть абелева группа;
алгебра ‹К, ·, 1› есть моноид;
умножение дистрибутивно относительно сложения, то есть для любых элементов a, b, c из К
Кольцо. Определение. Примеры. Простейшие свойства колец. Гомоморфизм и изоморфизм колец.
Определение. Кольцом называется алгебра К = ‹К, +, -, ·, 1› типа (2, 1, 2, 0), главные операции которой удовлетворяют следующим условиям:
(a + b) · c = a · c + b · c, c· (a + b) = c · a + c · b.
Основное множество К кольца К обозначается также через |К|. Элементы множества К называются элементами кольца К.
Опред. Группа ‹К, +, -› называется аддитивной группой кольца К. Нуль этой группы, то есть нейтральный элемент относительно сложения, называется нулем кольца и обозначается 0 или 0К.
Опред. Моноид ‹К, ·, 1› называется мультипликативным моноидом кольца К. Элемент 1, обозначаемый также через 1К, являющийся нейтральным относительно умножения, называется единицей кольца К.
Кольцо К называется коммутативным, если a · b = b · a для любых элементов a , b кольца. Кольцо К называется нулевым, если |К| = {0К}.
Опред. Кольцо К называется областью целостности, если оно коммутативно, 0К ≠ 1К и для любых a, b Î К из a· b = 0 следует a = 0 или b = 0.
Опред. Элементы a и b кольца К называются делителями нуля, если a ≠ 0, b ≠ 0 или ba = 0. (Любая область целостности не имеет делителей нуля.)
Пример. Пусть К – множество всех действительных функций, определенных на множестве R действительных чисел. Сумма f + g, произведение f · g, функция
f(-1) и единичная функция 1 определяются: (f + g) (х) = f (х) + g(х);
(f · g)(х) = f(х) · g(х); ( –f) (х) =–f (х); 1(х) = 1. Непосредственная проверка показывает, что алгебра ‹К, +, -, ·, 1› является коммутативным кольцом.
Простейшие свойства. Пусть К – кольцо. Так как алгебра ‹К, +, -› есть абелева группа, то для любых элементов a, b, из К уравнение b + x = a имеет единственное решение a + (-b), которое обозначается также через a – b.
Пусть К = ‹К, +, -, ◦, 1› и К` = ‹К`, +, -, ·, 1`› - кольца. Говорят, что отображение h множества К в К` сохраняет главные операции кольца К, если выполнены условия:
Опред. Гомоморфизмом кольца К в (на) кольцо К` называется отображение множества К в (на) К`, сохраняющее все главные операции кольца К. Гомоморфизм кольца К на К` называется эпиморфизмом.
Опред. Гомоморфизм h кольца К на кольцо К` называется изоморфизмом, если h является инъективным отображением множества K на К`. Кольца К и К` называются изоморфными, если существуют изоморфизм кольца К на кольцо К`.