Автор работы: Пользователь скрыл имя, 02 Апреля 2013 в 16:44, реферат
Целью данной курсовой работы является разработка модели группового обслуживания с несколькими этапами и двойной очередью, то есть работа оптового магазина. Основой для разработки модели в данной курсовой работе является метод имитационного моделирования. Так же курсовая работа предполагает создание программы на языке C++, обеспечивающей ввод исходной информации, ее обработку, реализацию алгоритма имитации процесса и выдачу необходимой информации.
Введение
1 Имитационное моделирование
2 Описание системы
2.1 Модельное время
2.2 Классы и объекты
2.3 События и методы
3 Реализация модели
3.1 Программная реализация
3.2 Построение графиков
3.2.1 Программа gnuplot
3.2.2 Использование программы для построения графиков
4 Анализ результатов
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ
2
Федеральное агентство по образованию
ГОУ ВПО «Нижегородский государственный архитектурно – строительный университет»
Международный институт экономики, права и менеджмента
Кафедра информационных систем в экономике
Курсовая работа
по дисциплине: Математические методы и модели
на тему:
«Имитационное моделирование группового обслуживания с несколькими этапами и двойной очередью: работа оптового магазина»
Выполнил студент:
Чикунова Е. О.
Проверил:
Прокопенко Н. Ю.
г. Н. Новгород
2010 г.
Оглавление
Введение
1 Имитационное моделирование
2 Описание системы
2.1 Модельное время
2.2 Классы и объекты
2.3 События и методы
3 Реализация модели
3.1 Программная реализация
3.2 Построение графиков
3.2.1 Программа gnuplot
3.2.2 Использование программы для построения графиков
4 Анализ результатов
Список использованной литературы
Введение
В современном мире гарантией эффективной работы любого предприятия служит рациональное использование денежных средств и трудового фактора. Именно поэтому для расчета экономического эффекта работы оптового магазина необходимо провести имитационное моделирование на основании предварительно установленных зависимостей.
Термин имитационное моделирование означает, что речь идет о моделях с помощью, которых нельзя вычислить или предсказать результат и поэтому с их помощью проводиться вычислительный эксперимент при заданных исходных данных.
Метод имитационного моделирования дает возможность широкого использования математического аппарата и вычислительной техники для исследования хода экономических процессов.
Таким образом, сущность
имитационного моделирования
Целью данной курсовой работы является разработка модели группового обслуживания с несколькими этапами и двойной очередью, то есть работа оптового магазина. Основой для разработки модели в данной курсовой работе является метод имитационного моделирования. Так же курсовая работа предполагает создание программы на языке C++, обеспечивающей ввод исходной информации, ее обработку, реализацию алгоритма имитации процесса и выдачу необходимой информации.
1. Имитационное моделирование
Можно дать следующее определение понятия модель: это такое описание, которое исключает несущественные подробности и учитывает наиболее важные особенности системы. Моделирование же можно определить как методологию изучения системы путем наблюдения отклика модели на искусственно генерируемый входной поток. К. Шеннон пишет так: «Имитационное моделирование есть процесс конструирования модели реальной системы и постановки экспериментов на этой модели с целью либо понять поведение системы, либо оценить (в рамках ограничений, накладываемых некоторым критерием или совокупностью критериев) различные стратегии, обеспечивающие функционирование данной системы...» Имитационное моделирование является экспериментальной и прикладной методологией, имеющей следующие цели [1]:
Авторы одной методологической работы сформулировали основные факторы, влияющие на принятие правильного решения по результатам моделирования:
Таким образом, моделирование — это больше, чем просто программа. Достижение целей моделирования требует пристального внимания ко всем указанным факторам.
Типовая последовательность
имитационного моделирования
Имитационное моделирование на компьютере, в принципе, позволяет проанализировать любую реальную систему произвольной сложности. Концептуально, промоделировать сложную систему так же легко, как и простую, разница будет состоять только в объеме программного кода. Имитационная модель может учесть любой нюанс в дисциплине обслуживания всего лишь путем небольшой модификации текста одной-двух процедур, а в аналитической модели это может потребовать коренной переделки всех уравнений, сделать модель необозримо сложной или оказаться вообще невозможным. Этот факт отражает как силу, так и слабость имитационной методологии. С одной стороны, имитационное моделирование даст метод анализа, применимый в тех случаях, когда математическая модель чрезмерно сложна и позволяет аналитику получить более точные результаты. Но с другой стороны, имитационная модель не позволяет глубоко заглянуть в сущность системы, выявить ее «изюминки» и законы, по которым она живет, построить качественные зависимости между «входом» и «выходом», как это позволяет сделать математическая модель, если ее, конечно, удалось решить. То, что при взгляде на математический результат видно сразу, при имитационном моделировании может быть выявлено только в результате постановки значительного количества экспериментов (еще говорят «прогонов»)[1].
Главная и наиболее очевидная цель имитационного моделирования — выяснить, как повлияют на производительность отдельные изменения конфигурации системы или увеличение нагрузки на нее. Процесс моделирования включает три фазы. На фазе валидации строится базовая модель существующей системы, проверяются и обосновываются предположения, лежащие в ее основе. На фазе проектирования модель используется в прогностических целях для предсказания влияния различных модификаций на производительность. На фазе верификации реальная производительность модифицированной системы сравнивается с результатами моделирования. Взятые вместе, эти три фазы образуют модельный цикл [1].
Фаза валидации.
Начинается с описания модели и включает выбор тех ресурсов и элементов деятельности, которые будут представлены; выявление особенностей системы, которые требуют внимания; выбор структуры модели; процедуры расчета необходимых показателей по результатам имитационного эксперимента.
Далее в реально
функционирующей системе
Фаза проектирования.
На этой фазе входные параметры меняются в соответствии с модификацией системы, эффективность которой нужно проверить с помощью модели. Это довольно сложный и ответственный процесс, ведь необходимо правильно сформулировать вопрос дли модели. Результаты затем анализируются, их отличия от выходных данных исходной модели и представляют собой эффект от модификации системы.
Фаза верификации.
На фазе верификации измерения снимаются с обновленной системы, и снова проводится сравнение. Производительность системы сравнивается с данными моделирования. Наблюдаемые различия могут объясняться двумя причинами:
Кроме того, точность выходных данных модели не может быть лучше точности, с которой заданы входные параметры.
Модельный цикл отнюдь не является строго последовательным процессом. Между отдельными составляющими фаз валидации и проектирования могут существовать жесткие зависимости. Может потребоваться совместимость между описанием модели, замерами данных и методикой оценки модели. Достижение такой совместимости и ее согласование с конкретными целями моделирования являются по своей сущности процессами итерационными.[1]
2. Описание системы
В оптовом магазине используется новая процедура обслуживания клиентов. Клиенты, попадая в магазин, определяют по каталогу наименования товаров, которые они хотели бы приобрести. После этого клиента обслуживает клерк, который идет на расположенный рядом склад и приносит необходимый товар. Клиент ожидает дважды, сначала приема заказа, затем его выполнения. Каждый из клерков может обслуживать одновременно не более шести клиентов. Время, которое затрачивает клерк на путь к складу, равномерно распределено на интервале от 0.5 до 1,5 мин. Время поиска нужного товара зависит от числа наименовании, которые клерк должен найти на складе. Это время нормально распределено с математическим ожиданием, равным утроенному числу искомых наименований, и среднеквадратичным отклонением, равным одной пятой математического ожидания. Следовательно, если, например, со склада надо взять товар одного наименования, время на его поиск будет нормально распределено с математическим ожиданием, равным 3 мин. и среднеквадратичным отклонением, равным 36 с. Время возвращения со склада равномерно распределено на интервале от 0.5 до 1,5 мин. По возвращении со склада клерк рассчитывается со всеми клиентами, которых он обслуживает. Время расчета с клиентом равномерно распределено на интервале от 1 до 3 мин. Расчет производится в том порядке, в каком к клерку поступали заявки на товар. Интервалы между моментами поступления заявок на товары от клиентов экспоненциально распределены с математическим ожиданием, равным 2 мин Клиентов в магазине обслуживают три клерка. Цель моделирования — определить следующее:
О загрузку клерков;
О среднее время, необходимое на обслуживание одного клиента с момента подачи заявки на товар до оплаты счета за покупку;
О среднее число заявок, удовлетворяемых клерком за один выход на склад.
Продолжительность имитационного прогона составляет 1000 мин.
Так как время в задаче размерное, за единицу модельного времени примем секунд. Равномерное распределение будем генерировать непосредственно в секундах, а нормальное и экспоненциальное — в минутах, с последующим умножением на 60 и округлением до ближайшего целого.
В задаче описана открытая многоканальная система с неограниченным буфером, имеющая, однако, ряд довольно интересных особенностей. Обслуживание заявки в канале (клерком) представляет собой многоэтапный процесс с параметром - количеством единовременно обслуживаемых клиентов. Эта дисциплина носит название групповое обслуживание. Таким образом, текущее состояние процесса обслуживания характеризуется не одним значением — временем, оставшимся до завершения, а несколькими — номером этапа, временем, оставшимся до завершения этапа, и числом клиентов. Таких этапов четыре — путь на склад, поиск товара, путь обратно, расчет. На первых трех этапах число клиентов остается постоянным, на четвертом оно постепенно уменьшается до нуля, так как расплатившийся клиент покидает систему.