Формирование, понятия дроби как рационального числа, на уроках математики в начальной школе

Автор работы: Пользователь скрыл имя, 13 Ноября 2014 в 19:52, курсовая работа

Краткое описание

В любой системе общего образования математике занимает одно из центральных мест ,что несомненно говорит об уникальности этой области знаний.
История развития математики тесно связана с измерением величин. Однако как показала практика, для этих целей натуральных чисел недостаточно: довольно часто единица величины не укладывается целое число раз в измеряемой величине. Чтобы в такой ситуации точно выразить результат измерения, необходимо расширить запас чисел, введя числа, отличные от натуральных. К этому выводу люди приняли ещё в глубокой древности .Измерение длин ,площадей, масс и других привело к возникновению дробных чисел, что явилось основой введения понятия рационального числа.

Содержание

1.введение
Глава 1. исторический аспект происхождения дробей.

Понятие рационального числа


Множество положительных рациональных чисел как расширение множества натуральных чисел.

Формирование понятия доли и дроби в вариантных программах обучения математике

Заключение.
Список используемой литературы.

Прикрепленные файлы: 1 файл

курсовая работа.doc

— 230.50 Кб (Скачать документ)

                                                         Содержание

 1.введение

                                                               Глава 1.

    1. исторический аспект происхождения дробей.

 

    1. Понятие рационального числа

 

 

    1. Множество положительных рациональных чисел как расширение множества натуральных чисел.

 

    1. Формирование понятия доли и дроби в вариантных программах обучения математике

 

 

Заключение. Список используемой литературы.

 

 

                                                             Введение.

В любой системе общего образования математике занимает одно из центральных мест  ,что несомненно говорит об уникальности этой области знаний.

    История развития математики тесно связана с измерением величин. Однако как показала практика, для этих целей натуральных чисел недостаточно: довольно часто единица величины не укладывается целое число раз в измеряемой величине. Чтобы в такой ситуации точно выразить результат измерения, необходимо расширить запас чисел, введя числа, отличные от натуральных. К этому выводу люди приняли ещё в глубокой древности .Измерение длин ,площадей, масс и других привяло к возникновению дробных чисел, что явилось основой введения понятия рационального числа.

   В 5 веке до н.э. математики школы Пифагора было установлено, что существуют обрезки

Длины которых при выбранной единице длины нельзя выразить рациональным числом. в связи с решением этой проблемы, появились числа иррациональное. рациональные и иррациональные числа назвали действительными.

     Понятие рационального числа  в начальных классах в явной виде не вводится. На этом этапе изучению математики идет пропедевтическая работа, на проявление на формирование данного понятия. Младшие школьники знакомятся с понятием доли числа и с дробными числами.Затем понятие дроби уточняется и расширяется в основных школах.

    В связи с этим учителю необходимо  владеть понятием и рационального  числа, знать правила выполнения действий над рациональными числами, свойство этих чисел действий. Все это нужно не только для того, чтобы математически грамотно ввести понятие дроби и доли и обучать младших школьников выполнять с ними простейшие действия ,но и, что не менее важно, видеть взаимосвязи множеств рациональных и действительных чисел с множеством натуральных чисел. Без них понятия нельзя решить проблему примитивности в обучении математики в начальных и последующих классов школы.

    Все вышеизложенное позволило  нам определить тему курсовой  работы: «формирование ,понятия дроби как рационального числа, на уроках математики в начальной школе.

 

 

 

                                                                

 

                                                                1.1

                        исторический аспект происхождения  дробей.

 

 

Из истории возникновения обыкновенных дробей. 

   Необходимость в дробных числах возникла у человека на весьма ранней стадии развития. Уже дележ добычи, состоявший из нескольких убитых животных, между участниками охоты, когда число животных оказывалось не кратным числу охотников, могло привести первобытного человека к понятию о дробном числе.

Наряду с необходимостью считать предметы у людей с древних времён появилась потребность измерять длину, площадь, объём, время и другие величины. Результат измерений не всегда удаётся выразить натуральным числом, приходится учитывать и части употребляемой меры. Исторически дроби возникли в процессе измерения.

Потребность в более точных измерениях привела к тому, что начальные единицы меры начали дробить на 2, 3 и более частей. Более мелкой единице меры, которую получали как следствие раздробления, давали индивидуальное название, и величины измеряли уже этой более мелкой единицей. 

   В связи с этой необходимой работой люди стали употреблять выражения: половина, треть, два с половиной шага. Откуда можно было сделать вывод, что дробные числа возникли как результат измерения величин. Народы прошли через многие варианты записи дробей, пока не пришли к современной записи.

Дроби в Древнем Египте 

В Древнем Египте архитектура достигла высокого развития. Для того, чтобы строить грандиозные пирамиды и храмы, чтобы вычислять длины, площади и объемы фигур, необходимо было знать арифметику.

Из расшифрованных сведений на папирусах ученые узнали, что египтяне 4 000 лет назад имели десятичную (но не позиционную) систему счисления, умели решать многие задачи, связанные с потребностями строительства, торговли и военного дела. 

  В Древнем Египте некоторые дроби имели свои особые названия – а именно, часто возникающие на практике 1/2, 1/3, 2/3, 1/4, 3/4, 1/6 и 1/8. Кроме того, египтяне умели оперировать с так называемыми аликвотными дробями (от лат. aliquot – несколько) типа 1/n – их поэтому иногда также называют «египетскими»; эти дроби имели свое написание: вытянутый горизонтальный овальчик и под ним обозначение знаменателя. Что касается остальных дробей, то их следовало раскладывать в сумму египетских. Древние египтяне уже знали, как поделить 2 предмета на троих, для этого числа - 2/3 - у них был специальный значок. Это была единственная дробь в обиходе египетских писцов, у которой в числителе не стояла единица - все остальные дроби непременно имели в числителе единицу (так называемые основные дроби). Если египтянину нужно было использовать другие дроби, он представлял их в виде суммы основных дробей. Например, вместо 8/15 писали 1/3+1/5. Иногда это бывало удобно.   Умели египтяне также умножать и делить дроби. Но для умножения приходилось умножать доли на доли, а потом, быть может, снова использовать таблицу. Ещё сложнее обстояло с делением. Важную работу по исследованию египетских дробей провёл математик XIII века Фибоначчи.

Дроби в Древней Греции 

  Египетские дроби продолжались использоваться в древней Греции и впоследствии математиками всего мира до средних веков, несмотря на имеющиеся к ним замечания древних математиков (к примеру, Клавдий Птолемей говорил о неудобстве использования египетских дробей по сравнению с Вавилонской системой). Максим Плануд греческий монах, ученый, математик в  13  веке  ввел  название  числителя  и  знаменателя  

В Греции употреблялись наряду с единичными, «египетскими» дробями и общие обыкновенные

дроби. Среди разных записей употреблялась и такая: сверху знаменатель, под ним – числитель дроби. Например,  означало три пятых. Еще за 2-3 столетия до Евклида и Архимеда греки свободно владели арифметическими действиями с дробями.

Дроби в Индии. 

Современную систему записи дробей создали в Индии. Только там писали знаменатель сверху, а числитель снизу, и не писали дробной черты. Зато вся дробь помещалась в прямоугольную рамку. Иногда использовалось и «трехэтажное» выражение с тремя числами в одной рамке; в зависимости от контекста это могло обозначать неправильную дробь (a + b/c) или деление целого числа a на дробь b/c. Правила действий над дробями почти не отличались от современных.      

Дроби  у  арабов. 

Записывать дроби как сейчас стали арабы. Средневековые арабы пользовались тремя системами записи дробей. Во-первых, на индийский манер записывая знаменатель под числителем; дробная черта появилась в конце XII – начале XIII в. Во-вторых, чиновники, землемеры, торговцы пользовались исчислением аликвотных дробей, похожим на египетское, при этом применялись дроби со знаменателями, не превышающими 10 (только для таких дробей арабский язык имеет специальные термины); часто использовались приближенные значения; арабские ученые работали над усовершенствованием этого исчисления. В-третьих, арабские ученые унаследовали вавилонско-греческую шестидесятеричную систему, в которой, как и греки, применяли алфавитную запись, распространив ее и на целые части.

Дроби в Вавилоне 

Вавилоняне пользовались всего двумя цифрами. Вертикальная черточка обозначала одну единицу, а угол из двух лежащих черточек – десять. Эти черточки у них получались в виде клиньев, потому что вавилоняне писали острой палочкой на сырых глиняных дощечках, которые потом сушили и обжигали. 

В древнем Вавилоне предпочитали  постоянный знаменатель, равный 60-ти. Шестидесятеричными дробями, унаследованными от Вавилона, пользовались греческие и арабскиематематики и астрономы. Исследователи по-разному объясняют появление у вавилонян шестидесятеричной системы счисления. Скорее всего здесь учитывалось основание 60, которое кратно 2, 3, 4, 5, 6, 10, 12, 15, 20, 30 и 60, что значительно облегчает всякие расчеты.  

  Но было неудобно работать над натуральными числами, записанными по десятичной системе, и дробями, записанными по шестидесятеричной. А работать с обыкновенными дробями было уже совсем трудно. Поэтому голландский математик Симон Стевин предложил перейти к десятичным дробям.

Дроби в Древнем Китае 

В Древнем Китае уже пользовались десятичной системой мер, обозначали дробь словами, используя меры длины чи: цуни, доли, порядковые, шерстинки, тончайшие, паутинки. Дробь вида 2,135436 выглядела так: 2 чи, 1 цунь, 3 доли, 5 порядковых, 4 шерстинки, 3 тончайших, 6 паутинок. Так записывались дроби на протяжении двух веков, а в V веке китайский ученый Цзу-Чун-Чжи принял за единицу не чи, а чжан = 10 чи, тогда эта дробь выглядела так: 2 чжана, 1 чи, 3 цуня, 5 долей, 4 порядковых, 3 шерстинки, 6 тончайших, 0 паутинок.

Дроби в Древнем Риме 

Интересная система дробей была в Древнем Риме. Она основывалась на делении на 12 долей единицы веса, которая называлась асс. Двенадцатую долю асса называли унцией. А путь, время и другие величины сравнивали с наглядной вещью - весом. Например, римлянин мог сказать, что он прошел семь унций пути или прочел пять унций книги. При этом, конечно, речь шла не о взвешивании пути или книги. Имелось в виду, что пройдено 7/12 пути или прочтено 5/12 книги. А для дробей, получающихся сокращением дробей со знаменателем 12 или раздроблением двенадцатых долей на более мелкие, были особые названия. 

Даже сейчас иногда говорят: "Он скрупулёзно изучил этот вопрос."  Это значит, что вопрос изучен до конца, что не одной самой малой неясности не осталось. А происходит странное слово "скрупулёзно" от римского названия 1/288 асса - "скрупулус". В ходу были и такие названия: "семис"- половина асса, "секстанс"- шестая его доля, "семиунция"- половина унции, т.е. 1/24 асса и т.д. Всего применялось 18 различных названий дробей. Чтобы работать с дробями, надо было помнить для этих дробей таблицу сложения и таблицу умножения. Поэтому римские купцы твёрдо знали, что при сложении триенса (1/3 асса) и секстанса получается семис, а при умножении беса (2/3 асса) на сескунцию (2/3 унции, т.е.1/8 асса) получается унция. Для облегчения работы составлялись специальные таблицы, некоторые из которых дошли до нас.

Дроби на Руси        

В русском языке слово "дробь" появилось лишь в VIII веке. Происходит слово "дробь" от слова "дробить, разбивать, ломать на части". У других народов название дроби также связано с глаголами "ломать", "разбивать", "раздроблять". В первых учебниках дроби назывались "ломанные числа". В старых руководствах находили следующие названия дробей на Руси:

– половина, полтина,                                – треть,

– четь,                                                – полтреть,

– полчеть,                                                – полполтреть,

– полполчеть,                                        – полполполтреть (малая треть),

– полполполчеть (малая четь),                        – пятина,

– седьмина,                                           – десятина.

Древние математики 100/11 не считали дробью. Остаток от деления 1 фунт предлагается поменять на яйца, которых можно было купить 91 штуки. Если 91:11 то получится по 8 яиц и 3 яйца в остатке. Автор рекомендует отдать их тому, кто делил, или же поменять на соль, чтобы посолить яйца.

Десятичные дроби. 

   Уже несколько тысячелетий человечество пользуется дробными числами, а вот записывать их удобными десятичными знаками оно додумалось значительно позже. 

   Почему же люди перешли от обыкновенных дробей к десятичным? Да потому, что действия с ними более простые, особенно сложение и вычитание. 

Появились десятичные дроби в трудах арабских математиков в Средние века и независимо от них в древнем Китае. Но и раньше, в древнем Вавилоне, использовали дроби такого же типа, только шестидесятеричные.

Позднее учёный Гартман Бейер (1563-1625) выпустил сочинение “Десятичная логистика”, где писал: “…я обратил внимание на то, что техники и ремесленники, когда измеряют какую-нибудь длину, то очень редко и лишь в исключительных случаях выражают её в целых числах одного наименования; обыкновенно им приходится или брать мелкие меры, или обращаться к дробям. Точно так же астрономы измеряют величины не только в градусах, но и в долях градуса, т.е. минутах, секундах и т.п. Их деление на 60 частей не так удобно, как деление на 10, на 100 частей и т.д., потому что в последнем случае гораздо легче складывать, вычитать и вообще производить арифметические действия; мне кажется, что десятичные доли, если бы ввести вместо шестидесятеричных, пригодились бы не только для астрономии, но и для всякого рода вычислений”.

Сегодня мы пользуемся десятичными дробями естественно и свободно. Однако то, что кажется естественным нам, служило настоящим камнем преткновения для учёных Средневековья. В Западной Европе 16 в. вместе с широко распространённой десятичной системой представления целых чисел в расчётах повсюду применялись шестидесятеричные дроби, восходящие ещё к древней традиции вавилонян. Понадобился светлый ум нидерландского математика Симона Стевина, чтобы привести запись и целых, и дробных чисел в единую систему. По-видимому, толчком создания десятичных дробей послужили составленные им таблицы сложных процентов. В 1585 г. он опубликовал книгу “Десятина”, в которой объяснил десятичные дроби.

Информация о работе Формирование, понятия дроби как рационального числа, на уроках математики в начальной школе