Декартова система координат

Автор работы: Пользователь скрыл имя, 02 Апреля 2014 в 22:14, реферат

Краткое описание

Декарт впервые ввел координатную систему, которая существенно отличалась от общепринятой в наши дни. Он использовал косоугольную систему координат на плоскости, рассматривая кривую относительно некоторой прямой с фиксированной системой отсчета. Положение точек кривой задавалось с помощью системы параллельных отрезков, наклонных или перпендикулярных к исходной прямой. Декарт не вводил второй координатной оси, не фиксировал направления отсчета от начала координат. Только в 18 в. сформировалось современное понимание координатной системы, получившее имя Декарта.

Прикрепленные файлы: 1 файл

матан.docx

— 14.27 Кб (Скачать документ)

Министерство образования и науки

Самарской области

ГБОУ СПО Поволжский

Государственный колледж

 

 

 

 

 

 

 

 

 

 

 

 

Реферат

По теме :  " Декартова система координат " 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Выполнила студентка

Группы Эф-128

Балаба Лиза

 

 

 

Самара,2013

 

ДЕКАРТОВА СИСТЕМА КООРДИНАТ 

ДЕКА́РТОВА СИСТЕ́МА КООРДИНА́Т, прямолинейная система координат на плоскости или в пространстве (обычно с взаимно перпендикулярными осями и одинаковыми масштабами по осям). Названа по имени Р. Декарта (см. ДЕКАРТ Рене).  
Декарт впервые ввел координатную систему, которая существенно отличалась от общепринятой в наши дни. Он использовал косоугольную систему координат на плоскости, рассматривая кривую относительно некоторой прямой с фиксированной системой отсчета. Положение точек кривой задавалось с помощью системы параллельных отрезков, наклонных или перпендикулярных к исходной прямой. Декарт не вводил второй координатной оси, не фиксировал направления отсчета от начала координат. Только в 18 в. сформировалось современное понимание координатной системы, получившее имя Декарта.  
***  
Для задания декартовой прямоугольной системы координат выбирают взаимно перпендикулярные прямые, называемые осями. Точка пересечения осей O называется началом координат. На каждой оси задается положительное направление и выбирается единица масштаба. Координаты точки P считаются положительными или отрицательными в зависимости от того, на какую полуось попадает проекция точки P.  
 
Двухмерная система координат  
Декартовыми прямоугольными координатами точки P на плоскости в двухмерной системе координат называются взятые с определенным знаком расстояния (выраженные в единицах масштаба) этой точки до двух взаимно перпендикулярных прямых — осей координат или проекции радиус-вектора r точки P на две взаимно перпендикулярные координатные оси.  
В двухмерной системе координат горизонтальная ось называется осью абсцисс (ось OX), вертикальная ось — осью ординат (ось ОY). Положительные направления выбирают на оси OX — вправо, на оси OY — вверх. Координаты x и y называются соответственно абсциссой и ординатой точки. Запись P(a,b) означает, что точка P на плоскости имеет абсциссу a и ординату b.  
 
Трехмерная система координат  
Декартовыми прямоугольными координатами точки P в трехмерном пространстве называются взятые с определенным знаком расстояния (выраженные в единицах масштаба) этой точки до трех взаимно перпендикулярных координатных плоскостей или проекции радиус-вектора (см. РАДИУС-ВЕКТОР) r точки P на три взаимно перпендикулярные координатные оси.  
Через произвольную точку пространства O — начало координат — проведены три попарно перпендикулярные прямые: ось OX (ось абсцисс), ось OY (ось ординат), ось OZ (ось аппликат).  
На осях координат могут задаваться единичные вектора i, j, k по осям OX,OY, OZ соответственно.  
В зависимости от взаимного расположения положительных направлений координатных осей возможны правая и левая координатные системы. Как правило, пользуются правой системой координат. В правой системе координат положительные направления выбирают следующим образом: по оси OX — на наблюдателя; по оси OY — вправо; по оси OZ — вверх. В правой системе координат кратчайший поворот от оси X к оси Y осуществляется против часовой стрелки; если одновременно с таким поворотом двигаться вдоль положительного направления оси Z, то получится движение по правилу правого винта.  
Запись P(a,b,c) означает, что точка Р имеет абсциссу a, ординату b и аппликату c.  
Каждая тройка чисел (a,b,c) задает единственную точку Р. Следовательно, прямоугольная декартова система координат устанавливает взаимно однозначное соответствие между множеством точек пространства и множеством упорядоченных троек действительных чисел.  
Кроме координатных осей существуют также координатные плоскости. Координатными поверхностями, для которых одна из координат остается постоянной, здесь являются плоскости, параллельные координатным плоскостям, а координатными линиями, вдоль которых меняется только одна координата, — прямые, параллельные координатным осям. Координатные поверхности пересекаются по координатным линиям.  
Координатная плоскость XOY содержит оси OX и OY, координатная плоскость YOZ содержит оси OY и OZ, координатная плоскость XOZ содержит оси OX и OZ.


Информация о работе Декартова система координат