Автор работы: Пользователь скрыл имя, 29 Мая 2012 в 18:19, курсовая работа
Про¬бле¬ма за¬щи¬ты ин¬фор¬ма¬ции пу¬тем ее пре¬об¬ра¬зо¬ва¬ния, исключающего ее про¬чте¬ние по¬сто¬рон¬ним ли¬цом вол¬но¬ва¬ла че¬ло¬ве¬че¬ский ум с дав¬них вре¬мен. История криптографии - ровесница истории человеческого языка. Более того, первоначально письменность сама по себе была криптографической системой, так как в древних обществах ею владели только избранные. Священные книги Древ¬него Егип¬та, Древ¬ней Индии тому примеры.
С широким распространением письменности криптография стала формироваться как самостоятельная наука. Первые криптосистемы встречаются уже в начале нашей эры. Так, Цезарь в своей переписке использовал уже более менее систематический шифр, получивший его имя.
Бурное раз¬ви¬тие крип¬то¬гра¬фи¬че¬ские сис¬те¬мы по¬лу¬чи¬ли в го¬ды пер¬вой и вто¬рой ми¬ро¬вых войн. Начиная с послевоенного времени и по нынешний день появление вычислительных средств ускорило разработку и совершенствование криптографических методов.
В В Е Д Е Н И Е 3
ГЛАВА 1.СИММЕТРИЧНЫЕ КРИПТОСИСТЕМЫ 7
1.1. Классификация криптографических методов 7
1.2. Системы подстановок 8
1.3. Подстановка Цезаря 9
1.4.Многоалфавитные системы. Системы одноразового использования 10
1.5.Системы шифрования Вижинера 11
1.6. Гаммирование 13
1.7. Шифрование с помощью аналитических преобразований 14
1.8. Криптосистемы на основе эллиптических уравнений 15
ГЛАВА 2. ЭЛЛИПТИЧЕСКИЕ ФУНЦИИ – РЕАЛИЗАЦИЯ МЕТОДА ОТКРЫТЫХ КЛЮЧЕЙ 16
2.1.Системы с открытым ключом 16
2.2. Типы криптографических услуг 18
2.3. Цифровые представления 19
2.4. Эллиптическая криптография кривой. 19
2.5.Электронные платы и код с исправлением ошибок 20
ГЛАВА 3.ОПИСАНИЕ АЛГОРИТМА 22
3.1. Целочисленная проблема факторизации (IFP): RSA и Рабин-Уильям 22
3.1.1. Описание задачи 22
3.1.2. Разложения на множетели 23
3.2.Дискретная проблема логарифма (процессор передачи данных): 24
3.2.1 Описание задачи 24
3.2.2. Разложение на множетели 24
3.3.Эллиптическая кривая дискретная проблема логарифма (ECDLP) 25
3.3.1. Описание задачи 25
3.3.2. Разложения на множетели 26
3.3.3. Программные разложения фунции на множетели 27
3.3.4 Выбор основного поля Fq и эллиптической кривой E 28
3.3.5.Стандарты кода с исправлением ошибок 29
ЗАКЛЮЧЕНИЕ. 31
СПИСОК ЛИТЕРАТУРЫ. 33
Прежде, чем системы засекречивания и соответствующие математические проблемы могут быть обсуждены, должна быть определена трудность проблемы. Алгоритм – это процесс, описывающий проблему , которую нужно решить.
При поиске математической
Сегодня должны рассмотреться только три типа безопасных и эффективных систем:
Рассмотрим каждую систему в отдельности.
Целочисленная проблема факторизации (IFP): находит p и q, учитывая составное число n, который является произведением двух больших простых чисел p и q.
Обнаружение больших простых
чисел - относительно простая
задача, а проблема разложения
на множители, произведение двух
таких чисел рассматривается
в вычислительном отношении
В
то время как целочисленная
Имеются в основном два типа специализированных и универсальных алгоритмов разложения на множители. Специализированные алгоритмы разложения на множители пытаются эксплуатировать специальные особенности номера n разлагаемого на множители. Текущие времена универсальных алгоритмов разложения на множители зависят только от размера n.
Один из наиболее мощных специализированных алгоритмов разложения на множители - эллиптический метод разложения на множители кривой (режим исправления ошибок), который был изобретен в 1985 Х.Ленстром младшим. Текущее время этого метода зависит от размера главных множителей n, и следовательно алгоритм имеет тенденцию находить сначала маленькие множители. 21 июня 1995 Andreas Mueller (студент в Universitaet des Saarlandes, Германия) объявил, что он нашел 44-десятичную цифру с 147-разрядным множителем 99-десятичной цифрой с 329-разрядным составным целым числом, используя режим исправления ошибок. Вычисление было выполнено на сети АРМ, и долговечность была приблизительно 60 MIPS годы. Самый большой главный множитель, найденный к настоящему времени режимом исправления ошибок - 47-десятичная цифра с 157-разрядным главным множетелем 135-десятичной цифры 449-разрядный номер. До развития RSA системы шифрования, лучший универсальный алгоритм разложения на множители был алгоритм цепной дроби , который имел числа множителя до 40 десятичных цифр (133 бита). Этот алгоритм был основан на идее относительного использования основы множителя штрихов и производства связанного с набором линейных уравнений, чее решение в конечном счете вело к факторизации. Та же самая идея лежит в основе лучших универсальных алгоритмов, используемых сегодня: квадратичное решето (QS) и решето поля цифр (NFS). Оба эти алгоритмы могут быть легко параллелизованы, чтобы разрешить разложение на множители на распределительных сетях АРМ. Квадратичное решето было разработано Карлом Померансом 1984. Первоначально, это применялось к числам множителя в 70-десятичной цифре 233-разрядный диапазон. В 1994 это использовалось группой исследователей во главе с А.Ленстром к множителю 129-десятичной цифры 429-разрядного номера проблемы RSA, который был изложен Мартином Гарднером 14 1977. Факторизация была выполнена через 8 месяцев примерно на 1600 компьютерах во всем мире. Долговечность для факторизации была оценена как 5000 MIPS годы.
Сначала было разработано в 1989 ,что Решето поля цифр работает лучше всего на числах специальной формы. Алгоритм привык к множителю 155-десятичной цифры 513-разрядного номера. Это было впоследствии расширено к универсальному алгоритму факторизациию. Эксперименты доказали, что NFS является действительно превосходящим алгоритмом для целых чисел разложения на множители, имеющих по крайней мере 120 десятичных цифр (400 битов). В 1996, группа во главе с А.Ленстром использовала NFS к множителю 130-десятичной цифры 432-разрядного номера. Это - самый большой номер, разложенный на множители до настоящего времени. Факторизация, как оценивали, брала меньше чем 15 % из 5000 MIPS годы, которые требовались для факторизации 129-десятичной цифры проблемы RSA. Разложение на множители 155 десятичной цифры 512-разрядного номера могло брать меньше усилия в 5 раз. 512-разрядный модуль n обеспечивает только крайнюю защиту , когда используется в RSA системе шифрования.
Алгоритм
цифрового представления
Если p - простое число, то Zp обозначает набор целых чисел 0, 1, 2,..., p - 1, где сложение и амплитудное искажение - выполняются с модулем. Известно, что существует ненулевой элемент О Zp такой, что каждый ненулевой элемент в Zp может быть написан как мощность a, такой элемент называется генератором Zp.
Дискретная проблема логарифма (процессор передачи данных) заключается в следующем: учитывая штрих p, генератор Zp, и ненулевой элемент О Zp, находит уникальное целое число 0,1,2,..., p - 2, такое что b принадлежит
al (mod p). Целое число l называется дискретным логарифмом b к основе a.
Базируясь на трудности этой проблемы, Диффи и Хеллман предложили известную Diffie-Hellman ключевую схему соглашения в 1976. С тех пор были предложены многочисленные другие криптогафические протоколы, чья защита зависит от процессора передачи данных, включая: Американский правительственный алгоритм цифрового представления (системный агент каталога), ElGamal кодирование и схемы сигнатуры, Schnorr схема сигнатуры, и Nyberg-Rueppel схема сигнатуры.С должным интересом процессор передачи данных экстенсивно изучился математиками в течение прошлых 20 лет.
Как
с целочисленной проблемой
Самые
быстрые универсальные
В случае с разложением на множители, лучшим текущим алгоритмом является процессор передачи данных - решето поля цифр. Он имеет то же самое асимптотическое текущее время , как соответствующий алгоритм для целочисленной факторизации. Это может свободно интерпретироваться с таким сообщением: что обнаружение логарифмов в случае k-бита главного модуля p
стольже трудно как разложение на множители k-бит составного число n.
Выполнение дискретных алгоритмов логарифма отстало от аналогичных усилий для разложения на множители целых чисел. В 1990 Брайен ЛаМакчия и O.Эндрю использовали вариант метода конкремента индекса, называемого методом Комплексного целого числа вычисляемого дискретный модуль логарифмов 191-разрядный штрих. Раньше Вебер, Дэнни и Зауер (студенты в Universitaet des Saarlandes, Германия) вычислили дискретный модуль логарифмов 248-разрядный штрих, используя решето поля цифр.
Проект, инициализированный в
Тем не менее, для долгой защиты, 1024-разрядный или больший moduli p должен использоваться в дискретных системах шифрования логарифма.
Эллиптический аналог кривой системного агента каталога (ECDSA), и эллиптических аналогов кривой Diffie-Hellman ключевой схемы соглашения, ElGamal кодирования и схем сигнатуры, Schnorr схемы сигнатуры, и Nyberg-Rueppel схемы сигнатуры.
Должно быть подчеркнуто, что эти проблемы являются труднообрабатываемыми, потому что годы интенсивного изучения ведущими математиками и компьютерными учеными не сумели выдать эффективные алгоритмы для их решения .
Если q - главная мощность, то Fq обозначает конечное поле, содержащее q элементы. В приложениях q - обычно мощность 2 (2m) или вспомогательное простое число (p).
Эллиптическая кривая дискретная проблема логарифма (ECDLP) заключается в следующем: учитывая эллиптическую кривую E определенную по Fq, точка PОE (Fq) порядка n, и точки QОE (Fq), определяются целым числом 0, l, 2,..., n - 1, так что Добротность = lP, при условии, что такое целое число существует.
Базируясь на трудности этой проблемы, Нейл Коблиц и Виктор Миллер независимо друг от друга в 1985 предложили использовать группу точек на эллиптической кривой, определенной по конечному полю, для осуществления различных дискретных систем шифрования логарифма. Один такой криптогафический протокол, который стандартизируется аккредитованными организациями стандартов - эллиптический аналог кривой системного агента каталога, называемого ECDSA.
Имеется только два главных
способа в методах для решения
IFP: квадратичный алгоритм
Начиная с 1985, на ECDLP обратили значительное внимание ведущие математики во всем мире. Алгоритм из-за Pohlig и Hellman приводит определениеl к определениюl модуля каждый из главных множителей n. Следовательно, чтобы достичь возможно максимального уровня защиты, n должен быть главным. Лучший алгоритм, известный до настоящего времени для ECDLP - Pollard метод ро, где шаг имеется эллиптическое сложение кривой. В 1993 Р. Oorschot и Майкл Винер показали, как Pollard метод ро может быть параллелизован так, чтобы, если r процессоры использовались, то ожидаемое число с каждым процессором перед одиночным дискретным логарифмом получено - ( ) /r. Наиболее существенно, алгоритмы " типа показателя степени " не являются известными из-за ECDLP ,что касается процессора передачи данных. По этой причине, ECDLP является намного тяжелее или чем IFP или процессор передачи данных .
В 1991 Menezes, Okamoto и Vanstone (MOV) показал, как ECDLP может быть сокращен к процессу перпдачи данных в полях Fq, где могут применяться методы конкремента индекса. Однако, этот MOV алгоритм приведения эффективен только для очень специальной категории кривых ,известных как суперсингулярные кривые. Имеется простое испытание, чтобы гарантировать, что эллиптическая кривая не уязвима к этому разложению. Суперсингулярные кривые специально запрещены во всех стандартах эллиптических систем кривой типа ИИЭРА P1363, ANSI X9.62, и ANSI X9.63.