Закон тяготения Ньютона в Солнечной системе

Автор работы: Пользователь скрыл имя, 21 Октября 2012 в 10:02, контрольная работа

Краткое описание

Английский астроном и геофизик Э. Галлей, изучая материалы астрономических наблюдений, обратил внимание на сходство орбит комет 1456, 1531, 1607, 1682 гг. и периодичность их появления (около 76 лет). Он пришел к выводу, что во всех этих случаях была одна и та же комета, и предсказал ее возвращение в 1758 г. Однако из-за возмущающего действия Юпитера и Сатурна, комета Галлея несколько запоздала и появилась только в следующем, 1759, году, почти в точном соответствии с расчетами Клеро - он ошибся только на 19 дней. Предсказание возвращения кометы стало первой убедительной победой теории Ньютона.

Прикрепленные файлы: 1 файл

Контрольная работа по КСЕ зачтено.doc

— 196.50 Кб (Скачать документ)

 

К методам химической кинетики относят  изменение температуры, изменение  концентрации реагирующих веществ, катализ.

Скорость химической реакции можно  увеличить путем выбора химически  активных реагентов, повысив концентрации реагентов, увеличив поверхность твердых и жидких реагентов, повысив температуру, введением катализатора.

Так же скорость химической реакции  можно уменьшить путем выбора химически неактивных реагентов, понижением концентрации реагентов, уменьшением поверхности твердых и жидких реагентов, понижением температуры, введением ингибиторов.

 

ЗАДАЧА.

 

 Для решения задачи используем правило Вант-Гоффа. При увеличении температуры с 50 до 70C скорость реакции в соответствии с этим правилом возрастает:

v(t2)/v(t1) = g (t2 - t1)/10 = 3(70 - 50)/10 = 32 = 9.

Скорость  реакции обратно пропорциональна  времени реакции:

v(t2) / v(t1) = Т(t2) / Т(t1),

Т - время  реакции при различных температурах.

Переведем время в секунды - 135 с. Выразим отсюда Т(t2):

Т(t2) = Т(t1)·v(t2)/v(t1) = 135·(1/9) = 15 с.

Ответ: Время химической реакции 15с.

 

 

Задание 6. Понятие равновесия в механике и статистической термодинамике. Как ведут себя макросистемы вдали от равновесия? Поясните принцип локального равновесия. Используя принцип Ле Шаталье – Брауна ответьте, в какую сторону измениться равновесие в системе H2 + I2 « 2HI, при уменьшении концентрации йодоводорода?

 

В механике считается, что система  находится в равновесии, если все действующие на нее силы полностью уравновешены между собой, то есть гасят друг друга.

Термодинамическое равновесие - состояние  системы, при котором остаются неизменными по времени макроскопические величины этой системы. Положению равновесия с молекулярно-кинетической точки зрения отвечает состояние максимального хаоса в изолированной системе. По законам термодинамики такая система вернется в положение равновесия; при удалении от него ее состояние становится все более неустойчивым, и даже малые изменения какого-либо параметра могут перевести систему в новое состояние.

Отличия неравновесной структуры  от равновесной заключается в  следующем.

1. Система реагирует на внешние  условия (гравитационное поле  и т. п.).

2. Поведение случайно и не  зависит от начальных условий,  но зависит от предыстории.

3. Приток энергии создает в системе порядок, и стало быть энтропия ее уменьшается.

4. Наличие бифуркации - переломной  точки в развитии системы.

5. Когерентность: система ведет  себя как единое целое и  как если бы она была вместилищем дальнодействующих сил (такая гипотеза присутствует в физике). Несмотря на то, что силы молекулярного взаимодействия являются, система структурируется так, как если бы каждая молекула была «информирована» о состоянии системы в целом.

Различают также области равновесности  и неравновесности, в которых может пребывать система.

Неравновесная область.

1. Система «адаптируется» к внешним  условиям, изменяя свою структуру.

2. Множественность стационарных  состояний.

3.Чувствительность к флуктуациям (небольшие влияния приводят к большим последствиям, внутренние флуктуации становятся большими).

4. Неравновесность - источник порядка  (все части действуют согласованно) и сложности.

5. Фундаментальная неопределенность  поведения системы.

Равновесная область

1. Для перехода из одной структуры  к другой требуются сильные  возмущения или изменения граничных условий.

2. Одно стационарное состояние.

3. Нечувствительность к флуктуациям.

4. Молекулы ведут себя независимо друг от друга.

5. Поведение системы определяют  линейные зависимости. 

Будучи предоставлена самой  себе, при отсутствии доступа энергии  извне, система стремится к состоянию  равновесия - наиболее вероятному состоянию, достигаемому при энтропии, равной нулю. Пример равновесной структуры - кристалл. К такому равновесному состоянию в соответствии со вторым началом термодинамики приходят все закрытые системы, т. е. системы, не получающие энергии извне. Противоположные по типу системы носят название открытых. Изучение неравновесных состояний позволяет прийти к общим выводам относительно эволюции в неживой природе от хаоса к порядку.

Внутренняя релаксация противостоит процессам, нарушающим равновесие. В  случае разреженных газов - это процессы столкновений. Если возмущающие процессы менее интенсивны, чем релаксационные, то говорят о локальном равновесии, существующем в малом объеме. При этом не обязательно, чтобы в других частях системы состояние было близко к равновесию. Например, газ помещают между плоскостями, нагретыми до разных температур. Процесс теплопроводности крайне медленный, газ находится в неравновесном состоянии, а где-то в системе будет малая область с локальным равновесием. Эта идея, высказанная И.Р. Пригожиным, позволила описывать в такой области состояния теми же параметрами, что и при равновесии.

 

Важное понятие локального равновесия вводят при медленном изменении  внешнего воздействия и для времен, больших характерного времени элементарного релаксационного процесса, формирующего равновесие. Эти условия возникают из статистического рассмотрения процессов. Принцип локального равновесия ограничивает число систем, доступных термодинамическому рассмотрению. Есть также взаимное влияние друг на друга одновременно происходящих необратимых процессов. Существует принцип симметрии Кюри, который в формулировке Вейля гласит: «Если условия, однозначно определяющие какой-либо эффект, обладают некоторой симметрией, то результат их действия не нарушит эту симметрию». Поэтому формально все неравновесные процессы разделяют на скалярные (химические реакции), векторные (теплопроводность, диффузия) и тензорные (вязкое трение). В соответствии с принципом симметрии величины разного типа не могут быть связаны друг с другом. Так, скалярная величина (химическое сродство) не может вызвать векторный поток (теплопроводность).

 

Принцип Ле Шателье — Брауна — если на систему, находящуюся в равновесии, воздействовать извне, изменяя какое-нибудь из условий (температура, давление, концентрация), то равновесие смещается таким образом, чтобы компенсировать изменение. При уменьшении концентрации йодоводорода равновесие сместится в сторону образования продуктов (йодоводорода).

 

Задание 7.  Дайте общую характеристику жидкого состояния. Определите картину процессов при явлениях капиллярности, смачивании, вязкости, поверхностном натяжении.  Как объясняют большую теплоемкость воды, большое поверхностное натяжение и свойство капиллярности? Какое значение имеют эти особенности воды  в живой природе?

 

Жидкость — одно из агрегатных состояний вещества. Основным свойством жидкости, отличающим её от других агрегатных состояний, является способность неограниченно менять форму под действием касательных механических напряжений, даже сколь угодно малых, практически сохраняя при этом объём.

Жидкое состояние обычно считают  промежуточным между твёрдым телом и газом: газ не сохраняет ни объём, ни форму, а твёрдое тело сохраняет и то, и другое.

Форма жидких тел может полностью  или отчасти определяться тем, что  их поверхность ведёт себя как  упругая мембрана. Так, вода может  собираться в капли. Но жидкость способна течь даже под своей неподвижной поверхностью, и это тоже означает несохранение формы (внутренних частей жидкого тела).

Молекулы жидкости не имеют определённого  положения, но в то же время им недоступна полная свобода перемещений. Между  ними существует притяжение, достаточно сильное, чтобы удержать их на близком расстоянии.

Вещество в жидком состоянии  существует в определённом интервале  температур, ниже которого переходит  в твердое состояние (происходит кристаллизация либо превращение в  твердотельное аморфное состояние — стекло), выше — в газообразное (происходит испарение). Границы этого интервала зависят от давления.

 

Капиллярность, капиллярный эффект — физическое явление, заключающееся в способности жидкостей изменять уровень в трубках, узких каналах произвольной формы, пористых телах. Поднятие жидкости происходит в случаях смачивания каналов жидкостями, например воды в стеклянных трубках, песке, грунте и т. п. Понижение жидкости происходит в трубках и каналах, не смачиваемых жидкостью, например ртуть в стеклянной трубке. На основе капиллярности основана жизнедеятельность животных и растений, химические технологии, бытовые явления (например, подъём керосина по фитилю в керосиновой лампе, вытирание рук полотенцем).

Смачивание — это поверхностное явление, заключающееся во взаимодействии жидкости с поверхностью твёрдого тела или другой жидкости. Смачивание бывает двух видов:

Иммерсионное (вся поверхность  твёрдого тела контактирует с жидкостью)

Контактное (состоит из трёх фаз  — твердая, жидкая, газообразная)

Смачивание зависит от соотношения  между силами сцепления молекул  жидкости с молекулами (или атомами) смачиваемого тела (адгезия) и силами взаимного сцепления молекул жидкости (когезия).

Вязкость (внутреннее трение) — одно из явлений переноса, свойство текучих тел (жидкостей и газов) оказывать сопротивление перемещению одной их части относительно другой. Механизм внутреннего трения в жидкостях и газах заключается в том, что хаотически движущиеся молекулы переносят импульс из одного слоя в другой, что приводит к выравниванию скоростей — это описывается введением силы трения. Вязкость твёрдых тел обладает рядом специфических особенностей и рассматривается обычно отдельно. Различают динамическую вязкость (единицы измерения: пуаз, 0,1Па·с) и кинематическую вязкость (единицы измерения: стокс, м²/с, внесистемная единица — градус Энглера). Кинематическая вязкость может быть получена как отношение динамической вязкости к плотности вещества и своим происхождением обязана классическим методам измерения вязкости, таким как измерение времени вытекания заданного объёма через калиброванное отверстие под действием силы тяжести.

Поверхностное натяжение — термодинамическая характеристика поверхности раздела двух находящихся в равновесии фаз, определяемая работой обратимого изотермокинетического образования единицы площади этой поверхности раздела при условии, что температура, объем системы и химические потенциалы всех компонентов в обеих фазах остаются постоянными. Поверхностное натяжение имеет двойной физический смысл — энергетический (термодинамический) и силовой (механический). Энергетическое (термодинамическое) определение: поверхностное натяжение — это удельная работа увеличения поверхности при её растяжении при условии постоянства температуры. Силовое (механическое) определение: поверхностное натяжение — это сила, действующая на единицу длины линии, которая ограничивает поверхность жидкости.

 

Все эти особенности связаны  с наличием водородных связей. Из-за большой разности электроотрицательностей  атомов водорода и кислорода электронные облака сильно смещены в сторону кислорода. По причине этого, а также того, что ион водорода (протон) не имеет внутренних электронных слоев и обладает малыми размерами, он может проникать в электронную оболочку отрицательно поляризованного атома соседней молекулы. Благодаря этому, каждый атом кислорода притягивается к атомам водорода других молекул и наоборот. Определенную роль играет протонное обменное взаимодействие между молекулами и внутри молекул воды. Каждая молекула воды может участвовать максимум в четырёх водородных связях: 2 атома водорода — каждый в одной, а атом кислорода — в двух; в таком состоянии молекулы находятся в кристалле льда. При таянии льда часть связей рвётся, что позволяет уложить молекулы воды плотнее; при нагревании воды связи продолжают рваться, и плотность её растёт, но при температуре выше 4 °С этот эффект становится слабее, чем тепловое расширение. При испарении рвутся все оставшиеся связи. Разрыв связей требует много энергии, отсюда высокая температура и удельная теплота плавления и кипения и высокая теплоёмкость. Вязкость воды обусловлена тем, что водородные связи мешают молекулам воды двигаться с разными скоростями.

 

Высокая удельная теплоемкость в сочетании с высокой теплопроводностью это делает водную среду достаточно комфортной для обитания живых организмов. Благодаря высокой теплоемкости и теплопроводности водная среда, в отличие от воздушной, менее подвержена перепадам температур (как суточным, так и сезонным), что облегчает адаптацию животных и растений к этому абиотическому фактору.

Благодаря поверхностному натяжению  жидкость стремится принять такую  форму, чтобы площадь ее поверхности  была минимальной (в идеале - форму  шара). Из всех жидкостей самое большое  поверхностное натяжение у воды. Значительная когезия играет важную роль в живых клетках, а также при движении воды по сосудам в растениях. Многие мелкие организмы извлекают для себя пользу из поверхностного натяжения: такие организмы образуют экологическую группу нейстон, которая делится на эпинейстон (те, кто передвигаются по поверхности пленки, как водомерка), и гипонейстон -организмов, прикрепляющихся к поверхностной пленке в воде (личинки некоторых мух и комаров).

Капиллярные явления играют существенную роль в водоснабжении растений, передвижении влаги в почвах и других пористых средах. Капиллярная пропитка различных материалов широко применяется в различных технологических процессах. Не меньшую роль капиллярные явления играют и при образовании новой фазы: капель жидкости при конденсации паров и пузырьков пара при кипении и кавитации.

Капиллярные явления играют большую  роль в природе и технике. Подъем питательного раствора по стеблю или  стволу растения в значительной мере обусловлен явлением капиллярности: раствор  поднимается по тонким капиллярным трубкам, образованным стенками растительных клеток. По капиллярам почвы поднимается вода из глубинных в поверхностные слои почвы. Наоборот, разрыхляя поверхность почвы и создавая тем самым прерывистость в системе почвенных капилляров, можно задержать приток воды к зоне испарения и замедлить высушивание почвы.

Капиллярные явления играют существенную роль в водоснабжении растений и  перемещении влаги в почве. В сухую погоду почва ссыхается, и в ней образуются трещины - капилляры. По ним вода поднимается из-под земли вверх и испаряется. Поверхность земли из-за этого высыхает еще больше. Для сохранения влаги внутри земли верхний слой почвы разрыхляют. При этом капилляры разрушаются, и вода остается в почве.

 

Задание 8.  Поясните понятие равновесного излучения, модели абсолютного черного и абсолютно белого тела. В чем смысл гипотезы Планка о дискретном характере испускания света и ее значение? Насколько были решены при этом противоречия в теории теплового излучения? Определите температуру звезды Ригеля (b Ориона), в спектре которой максимум энергии приходится на длину волны 1930*10-10 м.

Информация о работе Закон тяготения Ньютона в Солнечной системе