Современная физическая картина мира

Автор работы: Пользователь скрыл имя, 21 Апреля 2014 в 09:44, реферат

Краткое описание

В философии, или в одном из её направление естествознание, с XVII в. начинают играть существенную роль философско-методологические принципы, позволяющие на определенном этапе развития знаний начать строить сравнительно цельные научные картины мироздания; закладывать основы идеи бесконечного приближения к объективной истине на основе механического объяснения природы. В первую очередь, это связано с такими именами как Коперник, Кеплер и Галилей. Галилей провозгласил главенствующую роль причинного объяснения природы, включая подчинение принципу причинности самой науки, и утверждал абсолютную объективность научной истины. Он подошел к анализу природных явлений как наблюдатель, отбросивший традиционные воззрения, что послужило формированию определенного стиля научного мышления. Галилей показал, как можно конкретизировать философские идеи в их методологическом качестве применительно к физическому познанию. Принцип относительности, сформулированный Галилеем, в этом отношении является одним из реализованных методологических идеалов, положенных в дальнейшем в основание первой научной физической картины мира – механистической.

Содержание

Введение…………………………………………………………………………….. ……3

Создание специальной теории относительности……………………………4-6
Создание и развитие общей теории относительности………………………6-8
Экспериментальная проверка общей теории относительности…………..8
Современное состояние теории гравитации и её роль в физике………….9

2.1 Возникновение и развитие квантовой физики……………………………....10-11
2.2 Создание нерелятивсткой квантовой механики…………………………….11-12
2.3 Проблема интерпретации квантовой механики.
Принцип дополнительности…………………………….12-13
2.4 Методологические установки неклассической физики…………………...13-14

3. Фундаментальные физические взаимодействия……………………………15
3.1 Гравитация……………………………………………………………………….....15-16
3.2 Электромагнетизм…………………………………………………………………16
3.3 Слабое взаимодействие………………………………………………………….16-17
3.4 Сильное взаимодействие…………………………………………………………17-18

4.1 Элементарные частицы…………………………………………………………..18-19
4.2 Теории элементарных частиц…………………………………………………..19
4.3 Теория кварков…………………………………………………………………...19-20
4.4 Теория электрослабого взаимодействия………………………………………20-21

Заключение……………………………………………………………………………….21-23

Библиография…………………

Прикрепленные файлы: 1 файл

Современная физическая картина мира.docx

— 200.60 Кб (Скачать документ)

 

 

 

 

 

 

3. Фундаментальные физические взаимодействия

В своей повседневной жизни человек сталкивается с множеством с множеством сил действующих на тела: сила ветра или потока воды, давление воздуха, мускульная сила человека, вес предметов, давление квантов света, притяжение и отталкивание электрических зарядов, сейсмические волны, вызывающие подчас катастрофические разрушения и т.д.. Одни силы действуют непосредственно при контакте с телом, другие, например гравитация, действуют на расстоянии, через пространство. Но, как выяснилось в результате развития естествознания, несмотря на столь большое разнообразие, все действующие в природе силы можно свести к четырем фундаментальным взаимодействиям.  Именно эти взаимодействия в конечном счете отвечают за все изменения в мире, именно они являются источником всех материальных преобразований тел, процессов. Каждое из четырех фундаментальных взаимодействий имеет сходство с тремя остальными и в то же время свои отличия. Изучение свойств фундаментальных взаимодействий составляет главную задачу современной физики.

 

3.1 Гравитация

Гравитация первым из четырех фундаментальных взаимодействий стала предметом научного исследования. Созданная в XVII в. Ньютоновская теория гравитации (закон всемирного тяготения) позволила впервые осознать истинную роль гравитации как силы природы.

Гравитация обладает рядом особенностей, отличающих ее от других фундаментальных взаимодействий. Наиболее удивительной особенностью гравитации является ее малая интенсивность. Гравитационное взаимодействие в 1039 раз меньше силы взаимодействия электрических зарядов. Как может такое слабое взаимодействие оказаться господствующей силой во Вселенной?

Все дело во второй удивительной черте гравитации — в ее универсальности. Ничто во Вселенной не может избежать гравитации. Каждая частица испытывает на себе действие гравитации и сама является источником гравитации, вызывает гравитационное притяжение. Гравитация возрастает по мере образования все больших скоплений вещества. И хотя притяжение одного атома пренебрежимо мало, но результирующая сила притяжения со стороны всех атомов может быть значительной. Это проявляется и в повседневной жизни: мы ощущаем гравитацию потому, что все атомы Земли сообща притягивают нас. Зато в микромире роль гравитации ничтожна. Никакие квантовые эффекты в гравитации пока не доступны наблюдению.

Кроме того, гравитация — далъподействующая сила природы. Это означает, что, хотя интенсивность гравитационного взаимодействия убывает с расстоянием, оно распространяется в пространстве и может сказываться на весьма удаленных от источника телах. В  астрономическом масштабе гравитационное взаимодействие, как правило, играет главную роль. Благодаря дальнодействию гравитация позволяет Вселенной развалиться на части: она удерживает планеты на орбитах, звезды в галактиках, галактики в скоплениях, скопления в Метагалактике.

Сила гравитации, действующая между частицами, всегда составляет собой силу притяжения: она стремится сблизить частицы. Гравитационное отталкивание еще никогда не наблюдалось.

Пока еще нет однозначного ответа на вопрос, чем является гравитация — неким полем, искривлением пространства-времени или тем и другим вместе. На этот счет существуют разные мнения и концепции. Поэтому нет и завершенной теории квантово-гравитационного взаимодействия.

 

 

3.2 Электромагнетизм

По величине электрические силы намного превосходят гравитационные, поэтому в отличие от слабого гравитационного взаимодействия электрические силы, действующие между телами обычных размеров, можно легко наблюдать. Электромагнетизм известен людям с незапамятных времен (полярные сияния, вспышки молнии и др.).

Не все материалы частицы являются носителями электрического заряда. Электрически нейтральны, например, фотон и нейтрино. В этом электричество отличается от гравитации. Все материальные частицы создают гравитационное поле, тогда как с электромагнитным- полем связаны только, заряженные частицы.

Долгое время загадкой была и природа магнетизма. Как и электрические заряды, одноименные магнитные полюсы отталкиваются, а разноименные — притягиваются. В отличие от электрических зарядов магнитные полюсы встречаются не по отдельности, а только парами — северный полюс и южный. Хорошо известно, что в обычном магнитном стержне один конец действует как северный полюс, а другой — как южный.

Электрическая и магнитная силы (как и гравитация) являются недействующими, их действие ощутимо на больших расстояниях от источника. Электромагнитное взаимодействие проявляется на всех уровнях материи — в мегамире, макромире и микромире. Как и гравитация, оно подчиняется закону обратных квадратов. Электромагнитное поле Земли простирается далеко в космическое пространство, мощное поле Солнца заполняет всю Солнечную систему;   существуют   и   галактические   электромагнитные   поля, электромагнитное взаимодействие определяет также структуру атомов и отвечает за подавляющее большинство физических и химических явлений и процессов (за исключением ядерных). К нему сводятся обычные силы: силы упругости, трения, поверхностного натяжения, им определяются агрегатные состояния вещества, оптические явления и др.

 

 

3.3 Слабое взаимодействие

К выявлению существования слабого взаимодействия физика продвигалась медленно. Слабое взаимодействие ответственно за распады частиц; и поэтому к его проявлением столкнулись с открытием радиоактивности и исследованием бета-распада. У бета-распада обнаружилась в высшей степени странная особенность. Исследования приводили к выводу, что в этом распаде как будто нарушается один из фундаментальных законов физики — закон сохранения энергии. Казалось, что часть энергии куда-то исчезала. Чтобы «спасти» закон сохранения энергии, В. Паули предположил, что  при бета-распаде вместе с электроном вылетает, унося с собой недостающую энергию, еще одна частица. Она — нейтральная и обладает необычайно высокой проникающей способностью, вследствие чего ее не удавалось наблюдать. Э. Ферми назвал частицу-невидимку «нейтрино».

Но предсказание нейтрино — это только начало проблемы, её постановка. Нужно было объяснить природу нейтрино, но здесь оставалось много загадочного. Дело в том, что электроны и нейтрино испускались нестабильными ядрами. Но было неопровержимо, доказано, что внутри ядер нет таких частиц. Как же они возникали? Было высказано предположение, что электроны и нейтрино не существуют в ядре в «готовом виде», а каким-то образом образуются из энергии радиоактивного ядра. Дальнейшие исследования показали, что входящие в состав ядра нейтроны, предоставленные самим себе, несколько минут распадаются на протон, электрон и нейтрино, т.е. вместо одной частицы появляется три новые. Анализ приводит к выводу, что известные силы не могут вызвать такой распад. Он, может, порождался какой-то иной, неизвестной силой. Исследования показали, что этой силе соответствует некоторое слабое взаимодействие.

Слабое взаимодействие по величине значительно меньше всех взаимодействий, кроме гравитационного, и в системах, где оно существует, его эффекты оказываются в тени электромагнитного сильного взаимодействий. Кроме того, слабое взаимодействие распространяется на очень незначительных расстояниях. Радиус слабого взаимодействия очень мал. Слабое взаимодействие прекращается на расстоянии, большем 1016 см от источника, и потому оно не может влиять на макроскопические объекты, а ограничивается микромиром, субатомными частицами. Когда началось лавинообразное открытие множества нестабильных субъядерных частиц, то обнаружилось, что большинство из них участвуют в слабом взаимодействии.

Теория слабого взаимодействия была создана в конце 60-х гг. С момента построения Максвеллом теории электромагнитного поля создание этой теории явилось самым крупным шагом на пути к единству физики.

 

3.4 Сильное взаимодействие

Последнее в ряду фундаментальных взаимодействий — сильное взаимодействие, которое является источником огромной энергии, более характерный пример энергии, высвобождаемой сильным взаимодействием, — Солнце. В недрах Солнца и звезд непрерывно: протекают термоядерные реакции, вызываемые сильным взаимодействием. Но и человек научился высвобождать сильное взаимодействие: создана водородная бомба, сконструированы и совершенствуются технологии управляемой термоядерной реакции. К представлению о существовании сильного взаимодействия физика шла в ходе изучения структуры атомного ядра. Какая-то сила должна удерживать положительно заряженные протоны в ядре, не позволяя им разлетаться под действием электростатического отталкивания. Гравитация слишком слаба и не может это обеспечить; очевидно, необходимо какое-то взаимодействие, причем, более сильное, чем электромагнитное. Впоследствии оно было обнаружено. Выяснилось, что хотя по своей величине сильное взаимодействие существенно превосходит все остальные фундаментальные взаимодействия, но за пределами ядра оно не ощущается. Как и в случае слабого взаимодействия, радиус действия новой силы оказался очень малым: сильное взаимодействие проявляется на расстоянии, определяемом размерами ядра, т.е. примерно 1013 см. Кроме того, выяснилось, что сильное взаимодействие испытывают не все частицы. Так, его испытывают протоны и нейтроны, но электроны, нейтрино и фотоны не подвластны ему. В сильном взаимодействии участвуют обычно только тяжелые частицы. Оно ответственно за образование ядер и многие взаимодействия элементарных частиц.

Таким образом, в фундаментальных физических взаимодействиях чётко прослеживается различие сил дальнодействующих и близкодействующих. С одной стороны, взаимодействия неограниченного радиуса действия (гравитация, электромагнетизм), а с другой — малого радиуса (сильное и слабое). Мир физических процессов развертывается в границах этих двух полярностей и является воплощением единства предельно малого и предельно большого — близкодействия в микромире и дальнодействия во всей Вселенной.

 

 

 

 

4.1 Элементарные частицы

Элементарные частицы играю огромную роль в общем понимании физической картины мира. Представления об элементарных частицах задаёт материю.

Исторически первыми экспериментально обнаруженными элементарными частицами были электрон, протон, а затем нейтрон. При таком подходе вещество строилось из протонов, нейтронов и электронов, а фотоны осуществляли взаимодействие между ними. Однако скоро выяснилось, что мир устроен гораздо сложнее. Было установлено, что каждой частице соответствует своя античастица, отличающаяся от неё лишь знаком заряда. Для частиц с нулевым зарядом античастица совпадает с частицей(например фотон). По мере развития экспериментальной ядерной физики к этим частицам добавилось ещё свыше 300 частиц!

Характеристиками субатомных частиц являются масса, электрический заряд, спин, время жизни, магнитный момент, пространственная чётность, лептонный заряд, барионный заряд и т.д..

Лептоны

  Хотя лептоны могут иметь  электрический заряд, а могут  и не иметь, спин у всех у  них равен ½. Среди лептонов  наиболее известен электрон.

Другой хорошо известный лептон-нейтрино. Нейтрино являются наиболее распространёнными частицами во Вселенной. Вселенную можно представить безбрежным нейтринным морем, в котором изредка встречаются острова в виде атомов. Но, несмотря на такую распространённость нейтрино, изучать их очень сложно. Как мы уже отмечали, нейтрино почти не уловимы. Не участвуя ни в сильном, ни в электромагнитном взаимодействиях, они проникают через вещества, как будто его вообще нет. Нейтрино – это некие “призраки” физического мира.

Адроны

  Разновидностей адронов около сотни. Тот факт, что адронов существует сотни, наводит на мысль, что адроны-не элементарные частицы, а построены из более мелких частиц. Все адроны встречаются в двух разновидностях-электрически заряженные и нейтральные. Наиболее известные и широко распространённые такие адроны как нейтрон и протон.

Существование и свойства большинства известных адронов были установлены в опытах на ускорителях. Открытие множества разнообразных адронов поставило физиков в тупик, но со временем  их  удалось классифицировать по спину, заряду и массе.

 

4.2 Теории элементарных частиц

Квантовая механика позволяет описывать движение элементарных частиц, но не их порождение или уничтожение, т.е. применяется лишь для описания систем с неизменным числом частиц. Обобщение квантовой механики является квантовая теория ноля — это квантовая теория систем с бесконечным числом степеней свободы (физических полей), учитывающая требования и квантовой механики, и теории относительности. Потребность в такой теории порождается квантово-волновым дуализмом, существованием волновых свойств всех частиц. В квантовой теории поля взаимодействие представляют как результат обмена квантами поля, а полевые величины объявляются операторами, которые связывают с актами рождения и уничтожения квантов поля, т.е. частиц.

В середине XX в. была создана теория электромагнитного взаимодействия — квантовая электродинамика (КЭД). Это продуманна мельчайших деталей и оснащенная совершенным математическим аппаратом теория взаимодействия между собой заряженных элементарных частиц (прежде всего, электронов или позитронов) посредством обмена фотонами. В КЭД для описания электромагнит взаимодействия использовано понятие виртуального фотона, теория удовлетворяет основным принципам как квантовой теории так и теории относительности.

В центре теории анализ актов испускания или поглощения одного фотона одной заряженной частицей, а также аннигиляции электронной позитронной пары в фотон или порождение фотонами такой пары.

Если в классическом описании электроны представляются в виде твердого точечного шарика, то в КЭД окружающее электрона электромагнитное поле рассматривается как облако виртуальных фотонов, которое неотступно следует за электроном, окружая его  квантами энергии. Фотоны возникают и исчезают очень быстро, а электроны движутся в пространстве не по вполне определенным траекториям. Еще можно тем или иным способом определить начальную конечную точки пути — до и после рассеяния, но сам путь в промежутке между началом и концом движения остается неопределенным.

Описание взаимодействия с помощью частицы-переносчика в КЭД привело к расширению понятия фотона. Вводятся понятия реального (кванта видимого нами света) и виртуального (призрачного) фотона, который «видят» только заряженные частицы претерпевающие рассеяние. За создание КЭД С. Томанага, Р. Фейнман и Дж. Швин-были удостоены Нобелевской премии за 1965 г. Большой вклад в становление КЭД был внесен и нашим выдающимся физиком-теоретиком Л.Д. Ландау. После подобного триумфа КЭД была принята как модель для квантового описания трех других фундаментальных взаимодействий. Разумеется, полям, связанным с другими взаимодействиями, должны соответствовать иные частицы-переносчики.

Информация о работе Современная физическая картина мира