Современная физическая картина мира

Автор работы: Пользователь скрыл имя, 21 Апреля 2014 в 09:44, реферат

Краткое описание

В философии, или в одном из её направление естествознание, с XVII в. начинают играть существенную роль философско-методологические принципы, позволяющие на определенном этапе развития знаний начать строить сравнительно цельные научные картины мироздания; закладывать основы идеи бесконечного приближения к объективной истине на основе механического объяснения природы. В первую очередь, это связано с такими именами как Коперник, Кеплер и Галилей. Галилей провозгласил главенствующую роль причинного объяснения природы, включая подчинение принципу причинности самой науки, и утверждал абсолютную объективность научной истины. Он подошел к анализу природных явлений как наблюдатель, отбросивший традиционные воззрения, что послужило формированию определенного стиля научного мышления. Галилей показал, как можно конкретизировать философские идеи в их методологическом качестве применительно к физическому познанию. Принцип относительности, сформулированный Галилеем, в этом отношении является одним из реализованных методологических идеалов, положенных в дальнейшем в основание первой научной физической картины мира – механистической.

Содержание

Введение…………………………………………………………………………….. ……3

Создание специальной теории относительности……………………………4-6
Создание и развитие общей теории относительности………………………6-8
Экспериментальная проверка общей теории относительности…………..8
Современное состояние теории гравитации и её роль в физике………….9

2.1 Возникновение и развитие квантовой физики……………………………....10-11
2.2 Создание нерелятивсткой квантовой механики…………………………….11-12
2.3 Проблема интерпретации квантовой механики.
Принцип дополнительности…………………………….12-13
2.4 Методологические установки неклассической физики…………………...13-14

3. Фундаментальные физические взаимодействия……………………………15
3.1 Гравитация……………………………………………………………………….....15-16
3.2 Электромагнетизм…………………………………………………………………16
3.3 Слабое взаимодействие………………………………………………………….16-17
3.4 Сильное взаимодействие…………………………………………………………17-18

4.1 Элементарные частицы…………………………………………………………..18-19
4.2 Теории элементарных частиц…………………………………………………..19
4.3 Теория кварков…………………………………………………………………...19-20
4.4 Теория электрослабого взаимодействия………………………………………20-21

Заключение……………………………………………………………………………….21-23

Библиография…………………

Прикрепленные файлы: 1 файл

Современная физическая картина мира.docx

— 200.60 Кб (Скачать документ)

Создание СТО было качественно новым шагом в развитии физического познания. От классической механики СТО отличается тем, что в физическое описание релятивистских явлений органически входит наблюдатель со средствами наблюдения. Описание физических процессов в СТО существенно связано с выбором системы координат. Физическая теория описывает не физический процесс сам по себе, а результат взаимодействия физического процесса со средствами исследования. Обращая на это внимание, Эйнштейн в уже упомянутой статье «К электродинамике движущихся тел» пишет: « Суждения всякой теории касаются соотношений между твердыми телами (координатными системами), часами и электромагнитными процессами». В СТО через осознание того, что нельзя дать описание физического процесса самого по себе, можно только дать его описание по отношению к определенной системе отсчета, впервые в истории физики непосредственно проявился диалектический характер процесса познания, активность субъекта познания, неотрывное взаимодействие субъекта и объекта познания.

 

 

1.2 Создание и развитие общей  теории относительности

 

Классическая механика и СТО формулируют закономерности физических явлений только для некоторого достаточно узкого класса инерциальных систем отсчета, не предлагая средств для реального выделения таких систем. Вполне закономерно возникла проблема, как распространить законы физики и на неинерциальные системы.

 После создания СТО Эйнштейн стал задумываться над этой проблемой применительно к принципу относительности: «Можем ли мы сформулировать физические законы таким образом, чтобы они были справедливыми для всех систем координат, не только для систем, движущихся совершенно произвольно по отношению друг к другу? Если это можно сделать, то... тогда мы будем в состоянии применять законы природы в любой системе координат».

Возможность реализации этой идеи Эйнштейн увидел на пути обобщения принципа относительности движения — распространения принципа относительности не только на скорость, но и на ускорение движущихся систем. Если не приписывать абсолютный характер не только скорости, но и ускорению, то в таком случае выделенность класса инерциальных систем потеряет свой смысл и можно так сформулировать физические законы, чтобы их формулировка имела смысл в отношении любой системы координат. Это и есть содержание общего принципа относительности.

Но тогда возникал вопрос, а что же такое масса тела в системе? Существует два различных и независимых способа определения Массы тела: 1) через ускорение, которое вызывает любая действующий на тело сила (инертная масса); 2) через притяжение в поле тяготения(гравитационная масса — вес тела). Независимость инертной и гравитационной масс и их эквивалентность была известна в классической механике и выражалась через закон пропорциональности веса и массы Р/m = g. В 1890 г. венгерский физик Л. Этвеш подтвердил факт эквивалентности инертной и гравитационной масс с высокой точностью (до 10-9, сейчас эта точность повышена до 10-12).  После открытия зависимости инертной массы от скорости (релятивистские эффекты) вопрос о независимости гравитационной массы от любых свойств тела и состояний, в которых они находятся, предстал в новом свете. Нужно было разобраться в вопросе, изменяются ли гравитационные свойства тел, если их инерционные свойства зависят от состояния движения.

Эквивалентность, существующую между ускорением и однородным полем тяготения, которая справедлива для механики, Эйнштейн считает возможным распространить на оптические и вообще любые физические явления. Этот расширенный принцип эквивалентности и был положен им  в основу общей теории относительности. Построение ОТО он завершил в 1916 г. При этом он использовал понятия и математический аппарат неевклидовых геометрий.

Мысленные эксперименты убедительно показывали, что релятивистская физика не может основываться на евклидовой геометрии и А. Эйнштейн вводит представление о том, что метрика пространства-времени обусловлена гравитационным полем, которое в свою очередь создано вещественными образованиями: «Наш мир неевклидов. Геометрическая природа его образована массами и их скоростями». Гравитационные уравнения ОТО стремятся раскрыть геометрические свойства нашего мира». Эйнштейн исходил из того, что пространственно-временной континуум носит риманов характер. А мановым (в узком смысле) называется пространство постоянной положительной кривизны. Его наглядный образ — поверхность обычной сферы. Это значит, что движение частицы в гравитационном поле определяется кратчайшей мировой линией, которая не является прямой, но тем не менее является кратчайшей.

С точки зрения ОТО пространство не обладает постоянной (нулевой) кривизной. Кривизна его меняется от точки к точке и определяется полем тяготения. Можно сказать больше: поле тяготения является не чем иным, как отклонением свойств реального пространства от свойств идеального евклидова пространства. Величина пространства тяготения в каждой точке определяется значением кривизны пространства в этой точке. Таким образом, движение материальной точки в поле тяготения можно рассматривать как свободное «инерциальное» движение, но происходящее не в евклидовом, а в пространстве с изменяющейся кривизной. В результате движение точки уже не является прямолинейным и равномерным, а происходит по геодезической линии искривленного пространства. Отсюда следует, что уравнение движения материальной точки, а также и луча света должно быть записано в виде уравнения геодезической линии искривленного пространства.

В последние десятилетия своей жизни Эйнштейн усиленно занимался поисками «единой теории поля», которая бы объединила теорию тяготения и теорию электромагнитного поля. С точки зрения Эйнштейна, реализация этой задачи позволила бы свойства вещества вывести из представлений о свойствах поля, рассматривать вещество как такие области в пространстве, где поле чрезвычайно сильно, и объяснить существование элементарных частиц. Однако несмотря на все остроумие его методов и колоссальное упорство, ему не удалось этого достигнуть. К середине XX в. стало ясно, что работа в этом направлении должна осуществляться с учетом существования не двух (гравитационное и электромагнитное), а четырех типов фундаментальных взаимодействий.

 

1.3 Экспериментальная проверка  общей теории относительности

 

Теория, которая не верна на практике, ставит себя под большое сомнение! Поэтому и новая теория общей теории относительности должна была 100% подтвердить себя на практике. Первый успех ОТО,  которая стала фундаментом для выявления новых и объяснения известных общих свойств и закономерностей Вселенной, заключался в объяснении открытой еще в 1859 г. (и непонятной с точки зрения классической теории) дополнительной скорости движения перигелия Меркурия (около 43" в столетие) под влиянием гравитационного поля Солнца. Прецессия орбиты Меркурия обусловлена искривлением пространства, вызванным гравитационным воздействием Солнца.

Большое значение для широкого признания ОТО имели опыты по измерению отклонения лучей света, проходящих около Солнца. Первая немецкая экспедиция по проверке данного эффекта была направлена уже в 1914 г. на территорию России, но в связи с началом Первой мировой войны  была  интернирована.  Затмение  29 мая 1919 г. представляло собой особенно благоприятный случай, когда в не наблюдений оказывалось большое число ярких звезд, и потому в Великобритании под руководством  А. Эддингтона были сформированы две экспедиции: одна направилась в Бразилию (Собрал), а другая — на один из островов, расположенных возле африканского материка (Принсипи). Как отмечалось в отчете, «результаты экспедиций в Собрал и на Принсипи оставляют мало сомнения в том, что луч света отклоняется вблизи Солнца и что отклонение, если приписать его действию гравитационного поля Солнца, по величине соответствует требованиям общей теории относительности Эйнштейна». Проведенные в 1922 г. новые измерения также подтвердили существование эффекта, предсказанного теорией Эйнштейна.

Другой результат, полученный в теории Эйнштейна, — наличие красного смещения в спектрах небесных тел — был подтвержден рядом опытов 1923—1926 гг. при наблюдении спектров Солнца и обладающего чрезвычайно большим полем тяготения спутника Сириуса..

Долгое время экспериментальных подтверждений ОТО было мало: изменения орбиты Меркурия, красное смещение в спектрах звёзд, искривление лучей света вблизи Солнца, обусловленное кривизной, пространства. Согласие теории с опытом достаточно хорошее, но чистота экспериментов нарушается различными сложными побочными влияниями. Однако влияние искривления пространства-времени можно обнаружить даже в умеренных гравитационных полях. Очень чувствительные часы, например, могут обнаружить замедление времени на поверхности Земли. Чтобы расширить экспериментальную базу ОТО, во второй половине XX в. были поставлены новые эксперименты: проверялась эквивалентность инертной и гравитационной масс (в том числе и путем лазерной локации Луны); с помощью радиолокации уточнялось движение перигелия Меркурия; измерялось гравитационное отклонение радиоволн Солнцем, проводилась радиолокация планет Солнечной системы; оценивалось влияние гравитационного поля Солнца на радиосвязь с космическими кораблями, которые отправлялись к дальним планетам Солнечной системы, и т.д. Все они, так или иначе, подтвердили предсказания, полученные на основе ОТО.

 

1.4 Современное состояние теории  гравитации и её роль в физике

В физике XX в. ОТО сыграла особую и своеобразную роль.

Во-первых, она представляет собой новую теорию тяготения хотя, возможно, и не вполне завершена и не лишена некоторых  недостатков. Трудность состоит в том, что гравитация — это вид энергии поэтому она сама является собственным источником энергии; гравитация  как физическое  поле сама обладает  (как,  например и электромагнетизм) энергией и импульсом, а значит, и массой. следовательно, уравнения теории нелинейны, т.е. нельзя просто сложить известные решения для простых систем, чтобы получилось полное решение для сложной системы. С этим связаны, например, трудности в интерпретации содержания тензора энергии — импульса. Математический аппарат теории настолько сложен, что почти все задачи кроме самых простейших, оказываются неразрешимыми. Из-за та ких трудностей   (возможно,   они  скорее технического  характера, но может быть и принципиального) ученые до сих пор — спустя 80 лет после того, как ОТО была сформулирована, — все еще пытаются разобраться в ее смысле.

Во - вторых, на основе ОТО были развиты два фундаментальных

направления современной физики: геометризированные единые теории поля; релятивистская космология.

Успешная геометризация гравитации заставила многих физиков задуматься над вопросом о сущности физики в ее отношении с геометрией. Здесь сложились две противоположные точки зрения:

I) поля и частицы непосредственно не определяют характер пространственно-временного континуума. Он сам служит лишь ареной проявления. Поля и частицы чужды геометрии мира и их надо добавить к геометрии, чтобы вообще можно было говорить о какой либо физике;

2) в мире нет ничего, кроме пустого искривленного  пространства. Материя, заряд, электромагнетизм и другие поля являются лишь проявлением искривленного пространства. Физика есть геометрия.

ОТО оказалась переходной теорией между первым и вторым подходами. В ОТО представлен смешанный тип описания реальности: гравитация в ней геометризирована, а частицы и поля, отличные от гравитации, добавляются к геометрии.

Многие ученые (в том числе и сам Эйнштейн) предпринимали попытки объединить электромагнитное и гравитационное поля в рамках достаточно общего геометрического формализма на базе ОТО. С открытием разнообразных элементарных частиц и соответствующих им полей естественно встала проблема включения и их в рамки подобной единой теории. Это положило начало длительному процессу поисков геометризированной единой теории поля, которая, по замыслу, должна реализовать второй подход — сведение физики к геометрии, создание геометродинамики.

Анализ показывает, что там, где проявляются изменения топологической структуры мира, топологии пространственно-временного континуума, там фиксируется кажущееся изменение фундаментальных законов природы. Так, происходит кажущееся нарушение причинности, когда при падении в «черную дыру» исчезают элементарные частицы. Поэтому изучение пространства и поиск единой теории поля имеет глобальное значение.

 

 

 

2.1 Возникновение и развитие  квантовой физики

 

Истоки квантовой физики можно найти в исследованиях процессов излучения тел. Еще в 1809 г. П. Прево сделал вывод, что каждое тело излучает независимо от окружающей среды. Развитие спектроскопии в XIX в. привело к тому, что при изучении спектров излучения начинают обращать внимание и на спектры поглощения. При выясняется, что между излучением и поглощением тела существует простая связь: в спектрах поглощения отсутствуют или ослабляются те участки спектра, которые испускаются данным телом. Этот закон получил объяснение только в квантовой теории.

 Г. Кирхгоф в 1860 г. сформулировал новый закон, который гласит что для излучения одной и той же длины волны при одной и той же температуре отношение испускательной и поглощательной способностей для всех тел одинаково. Другими словами, если EλT и AλT – соответственно испускательная и поглощательная способности тела, зависящие от длины волны λ и температуры T, то

  где φ(λ,T) – некоторая универсальная функция λ и T, одинаковая для всех тел.

Кирхгоф ввел понятие абсолютно черного тела как тела, поглощающего все падающие на него лучи. При определении вида универсальной функции естественно было предположить, что можно воспользоваться теоретическими соображениями, прежде всего основными законами термодинамики. Л. Больцман показал, что полная энергия излучения абсолютно черного тела пропорциональна четвертой степени его температуры, однако задача конкретного определения вида функции Кирхгофа оказалась весьма трудной, и исследования в этом направлении, основанные на термодинамике и оптике, не привели к успеху. Опыт давал картину, не объяснимую с точки зрения классических представлений: при термодинамическом равновесии между колеблющимися атомами вещества и электромагнитным излучением почти энергия сосредоточена в колеблющихся атомах и лишь ничтожная часть ее приходится на долю излучения, тогда как согласно классической теории практически вся энергия должна была бы перейти к электромагнитному полю.

Информация о работе Современная физическая картина мира