Волоконно - оптические линии связи

Автор работы: Пользователь скрыл имя, 30 Октября 2014 в 21:55, курсовая работа

Краткое описание

В работе рассмотрены основополагающие принципы построения волоконно-оптических систем передачи на городской телефонной сети,принцип действия некоторых оптических гироскопов, в том числе волоконно-оптических. Волоконно-оптические гироскопы на¬ходят широкое применение. Быстрыми темпами ведется разработка различных приборов на микрооптической технологии, волоконно-оптических функциональных элементах, оптических волноводных элементах. К настоящему времени такие гироскопы среднего класса уже имеются в продаже.

Содержание

Введение ……………………………………………………………………. ст. 2
1 Обзор существующих методов передачи на волоконно-оптических
системах передачи городских телефонных сетей ………………………..... ст. 3
1.1 Принципы построения и основные особенности ВОСП на ГТС ……... ст. 3
1.1.1 Линейные коды ВОСП на ГТС ………………………………………. ст. 5
1.1.2 Источники света ВОСП ………………. …………………………….. ст. 7
1.1.3 Детекторы ВОСП …………………………………………………….. ст. 8
1.1.4 Оптические кабели ВОСП …………………………………………… ст. 8
1.2 Одноволоконные оптические системы передачи ……………………... ст. 11
1.3 Построение передающих и приемных устройств ВОСП ГТС ………. ст. 11
1.3.1 Виды модуляции оптических колебаний …………………………... ст. 14
1.3.2 Оптический передатчик ……………………………………………... ст. 17
1.3.3 Оптический приемник ……………………………………………….. ст. 18
1.4 Выводы по главе……..…………………………………………………… ст. 19
2 Волоконно-оптические датчики ………………………………………….. ст. 21
2.1 От электрических измерений к электронным ………………………… ст. 21
2.2 От аналоговых измерений к цифровым ……………………………….. ст. 21
2.3 Цифризация и волоконно-оптические датчики ……………………….. ст. 22
2.4 Становление оптоэлектроники и появление оптических волокон …… ст. 23
2.4.1 Лазеры и становление оптоэлектроники ………………………………ст. 23
2.4.2 Появление оптических волокон ………………………………………. ст. 23
2.4.3 Одно- и многомодовые оптические волокна ………………………… ст. 24
2.4.4 Характеристики оптического волокна как структурного элемента датчика и систем связи ………………………………………………………………ст. 25
2.5 Классификация волоконно-оптических датчиков и примеры их применения ….……………………………………………………………………………….ст. 27
2.6 Заключение по главе ……………………………………………………...ст. 28
3 Оптические гироскопы ……………………………………………………..ст. 29
3.1 Принцип действия оптического гироскопа …………………………….. ст. 29
3.2 Структурные схемы оптических гироскопов ………………………….. ст. 32
3.3 Волоконно-оптические гироскопы ………………………………………ст. 33
3.4 Шумовые факторы, методы их устранения ……………………………. ст. 36
3.4.1 Основные оптические системы с повышенной стабильностью …….. ст. 36
3.5 Выводы по главе …………………………………………………………. ст. 38
Заключение…………………………………………………………………… ст. 39
Использованная литература ………………………………………………… ст. 42

Прикрепленные файлы: 1 файл

Курсовой проект - Волоконно - оптические линии связи.doc

— 7.08 Мб (Скачать документ)

 

Волоконно-оптические линии связи

Оглавление

 

Введение  ……………………………………………………………………. ст. 2

  1. Обзор существующих методов передачи на волоконно-оптических

системах передачи городских телефонных сетей ………………………..... ст. 3

    1. Принципы построения и основные особенности ВОСП на ГТС ……... ст. 3
      1. Линейные коды ВОСП на ГТС ………………………………………. ст. 5
      2. Источники света  ВОСП ………………. …………………………….. ст. 7
      3. Детекторы  ВОСП …………………………………………………….. ст. 8
      4. Оптические кабели  ВОСП …………………………………………… ст. 8 
    2. Одноволоконные оптические системы передачи ……………………...  ст. 11 
    3. Построение передающих и приемных устройств ВОСП ГТС ……….  ст. 11 
      1. Виды модуляции оптических колебаний …………………………...  ст. 14
      2. Оптический передатчик ……………………………………………...  ст. 17
      3. Оптический приемник ………………………………………………..  ст. 18 
    4. Выводы по главе……..…………………………………………………… ст. 19

2 Волоконно-оптические датчики  ………………………………………….. ст. 21

2.1 От электрических измерений к электронным …………………………  ст. 21

2.2 От аналоговых измерений к цифровым ……………………………….. ст. 21

2.3 Цифризация и волоконно-оптические  датчики ………………………..  ст. 22

2.4 Становление оптоэлектроники  и появление оптических волокон ……  ст. 23

2.4.1 Лазеры и становление оптоэлектроники  ………………………………ст. 23

2.4.2 Появление оптических волокон ………………………………………. ст. 23

2.4.3 Одно- и многомодовые оптические  волокна ………………………… ст. 24

2.4.4 Характеристики оптического  волокна как структурного элемента  датчика                         и систем связи ………………………………………………………………ст. 25

2.5 Классификация  волоконно-оптических датчиков и примеры их применения ….……………………………………………………………………………….ст. 27

2.6 Заключение по главе ……………………………………………………...ст. 28

3 Оптические гироскопы ……………………………………………………..ст. 29

3.1 Принцип действия оптического  гироскопа …………………………….. ст. 29

3.2 Структурные схемы оптических гироскопов …………………………..  ст. 32

3.3 Волоконно-оптические гироскопы ………………………………………ст. 33

3.4 Шумовые факторы, методы их устранения ……………………………. ст. 36

3.4.1 Основные оптические системы  с повышенной стабильностью …….. ст. 36

3.5 Выводы по главе …………………………………………………………. ст. 38

Заключение…………………………………………………………………… ст. 39

Использованная литература …………………………………………………  ст. 42

 

                                         Введение

Хотя и существуют сети, которые для передачи данных применяют радиопередачу и другие виды беспроводных технологий, но подавляющее большинство ЛВС в качестве передающей среды используют кабель. Чаще всего это кабель с медной жилой для переноса электрических сигналов, но оптоволоконный кабель со стеклянным сердечником, по которому передаются световые импульсы, начинает приобретать все большую популярность. В силу того, что оптоволоконный кабель использует свет (фотоны) вместо электричества, почти все проблемы, присущие медному кабелю, такие как электромагнитные помехи, перекрестные помехи (переходное затухание) и необходимость заземления, полностью устраняются.

Передача информации по оптическим линиям связи имеет всего лишь 50-летнюю, но весьма бурную историю. В основе оптической передачи лежит эффект полного внутреннего отражения луча, падающего на границу двух сред с различными показателями преломления. Световод представляет собой тонкий двухслойный стеклянный стержень, у которого показатель преломления внутреннего слоя больше, чем наружного. Световод, управляемый источник света и фотодетектор образуют канал оптической передачи информации, протяженность которого может достигать десятков километров. Световоды пропускают свет с длиной волны 0,4-3 мкм (400-3000 нм), но пока практически используется только диапазон 600-1600 нм (часть видимого спектра и инфракрасного диапазона). История оптоволоконной передачи началась с коротковолновых (около 800 нм) систем. По мере совершенствования технологий производства излучателей и приемников уходят в сторону более длинных волн — через 1300 и 1500 к 2800 нм, передача которых может быть эффективнее. Высокая частота электромагнитных колебаний этого диапазона (1013-1014 Гц) дает потенциальную возможность достижения скорости передачи информации вплоть до терабит в секунду. Реально достижимый предел скорости определяется существующими источниками и приемниками сигналов — в настоящее время освоены скорости до нескольких гигабит в секунду.

 

 

 

 

 

 

 

 

 

 

 

 

 

 1 Обзор существующих методов передачи на волоконно-оптических системах передачи городских телефонных сетей

 

1.1Принципы построения и основные  особенности ВОСП на ГТС

 

Особенностью соединительных линий (С.Л) является относительно небольшая их длина за счет глубокого районирования сетей. Статистика распределения протяженности С.Л городской телефонной сети в крупнейших городах Украины свидетельствует, что С.Л протяженностью до 6 км составляют 65% от всего числа СЛ. Значительные расстояния между регенерационными пунктами  ВОСП дают возможность отказаться от оборудования регенераторов в колодцах телефонной канализации, а также от организации дистанционного питания (рис1.1).

В наиболее общем виде принцип передачи информации в волоконно-оптических системах связи можно пояснить с помощью рис.1.2. На передающей стороне на излучатель света, в качестве которого в  ВОСП используется светодиод или полупроводниковый лазер, поступает электрический сигнал, предназначенный для  передачи по линии связи. Этот сигнал модулирует оптическое излучение источника света, в результате чего электрический сигнал преобразуется в оптический. На приемной стороне оптический сигнал из О.В. вводится в фотодетектор (Ф.Д). В современных ВОСП в качестве Ф.Д. используют p-i-n или лавинный фото диод (ЛФД).

Фотодетектор преобразует падающее на него оптическое излучение  в исходный электрический сигнал. Затем электрический сигнал поступает на усилитель (регенератор) и отправляется получателю сообщения.

 

 

 

 

 

 

Рисунок 1.3 – Принцип передачи информации в волоконно-оптических системах связи.

 

Внедрение  ВОСП на местных сетях началось в 1986 г. вводом в эксплуатацию на ГТС вторичной цифровой волоконно-оптической системы передачи на базе аппаратуры «Соната-2». С её использованием во многих городах сооружены линии связи. Аппаратура «Соната-2» сопрягается со стандартным канало- и группо-образующим оборудованием типов ИКМ-30 и ИКМ-120. В 1990 г. начат промышленный выпуск оборудования вторичной цифровой системы передачи (ЦСП) для городских сетей ИКМ-120-5, предназначенной для передачи по градиентному оптическому кабелю (О.К.) линейного тракта, работающего на длинах волн 0,85 или 1,3 мкм. Разработана  ВОСП «Сопка-Г», предназначенная для организации оптического линейного тракта со скоростью передачи 34,368  Мбит/с по одномодовому и градиентному оптическому кабелю, с рабочей длиной волны 1,3 мкм. Аппаратура «Сопка-Г» выполнена в конструкции ИКМ-30-4, ИКМ-120-5 и аналогична им по системе технического обслуживания, то есть является продолжением единого семейства ЦСП для городской сети.

Выбор элементной базы при реализации  ВОСП и параметры её линейного тракта зависят от скорости передачи символов цифрового сигнала. МККТТ установлены правила объединения цифровых сигналов и определена иерархия аппаратуры временного объединения цифровых сигналов электросвязи. Сущность иерархии состоит в ступенчатом расположении указанной аппаратуры, при котором на каждой ступени объединяется определённое число цифровых сигналов, имеющих одинаковую скорость передачи символов, соответствующую предыдущей ступени. Цифровые сигналы во вторичной, третичной, и т.д. системах получаются объединением сигналов предыдущих иерархических систем. Для европейских стран установлены следующие стандартные скорости передачи для различных ступеней иерархии (соответственно ёмкости в телефонных каналах): первая ступень-2.048 Мбит/с (30 каналов), вторая-8.448 Мбит/с (120 каналов),  третья-34.368 Мбит/с (480 каналов), четвертая-139.264 Мбит/с (1920 каналов). В соответствии с приведенными скоростями можно говорить о первичной, вторичной, третичной и четвертичной группах цифровых сигналов электрической связи (в этом же порядке присвоены названия системам ИКМ).

Аппаратура, в которой выполняется объединение этих сигналов, называется аппаратурой временного объединения цифровых сигналов. На выходе этой аппаратуры цифровой сигнал скремблируется скремблером, то есть преобразуется по структуре без изменения скорости передачи символов для того, чтобы приблизить его свойства к свойствам случайного сигнала (рис.1.3). Это позволяет достигнуть устойчивой работы линии связи вне зависимости от статистических свойств источника информации. Скремблированный сигнал может подаваться на вход любой цифровой системы передачи, что осуществляется при помощи аппаратуры электрического стыка.

 

                                                                                        Аппаратура стыка


 


 

 

 

                                                                Аппаратура оптического линейного  тракта




 

 

 

 

Рисунок 1.3 – Структурная схема волоконно-оптической системы передачи

 

Для каждой иерархической скорости МККТТ рекомендует свои коды стыка, например для вторичной – код HDB-3, для четверичной – код CMI и т.д. Операцию преобразования бинарного сигнала, поступающего от аппаратуры временного объединения в код стыка, выполняет преобразователь кода стыка. Код стыка может отличаться от кода принятого в оптическом линейном тракте. Операцию преобразования кода стыка в код цифровой  ВОСП выполняет преобразователь кода линейного тракта, на выходе которого получается цифровой электрический сигнал, модулирующий ток излучателя передающего оптического модуля. Таким образом, волоконно-оптические системы передачи строятся на базе стандартных систем ИКМ заменой аппаратуры электрического линейного тракта на аппаратуру оптического линейного тракта.

 

      1. Линейные коды ВОСП на ГТС

Оптическое волокно, как среда передачи, а также оптоэлектронные компоненты фотоприёмника и оптического передатчика накладывают ограничивающие требования на свойства цифрового сигнала, поступающего в линейный тракт. По этому между оборудованием стыка и линейным трактом ВОСП помещают преобразователь кода. Выбор кода оптической системы передачи сложная и важная задача. На выбор кода влияет, во первых, нелинейность модуляционной характеристики и температурная зависимость излучаемой оптической мощности лазера, которые приводят к необходимости использования двухуровневых кодов.

Во вторых, вид энергетического спектра, который должен иметь минимальное содержание низкочастотных (НЧ) и высокочастотных (ВЧ) компонент. Энергетический спектр содержит непрерывную и дискретную части. Непрерывная часть энергетического спектра цифрового сигнала зависит от информационного сигнала и типа кода. Для того, чтобы цифровой сигнал не искажался в усилителе переменного тока фотоприёмника желательно иметь низкочастотную составляющую непрерывной части энергетического спектра подавленной, в противном случае для реализации оптимального приёма перед решающим устройством регенератора требуется введение дополнительного устройства, предназначенного для восстановления НЧ составляющей, что усложняет оборудование линейного тракта. Существует ещё одна причина для уменьшения низкочастотной составляющей сигнала. Дело в том, что оптическая мощность, излучаемая полупроводниковым лазером, зависит от окружающей температуры и может быть легко стабилизирована посредством отрицательной обратной связи (ООС) по среднему значению излучаемой мощности только в том случае, когда отсутствует НЧ часть спектра, изменяющаяся во времени. Иначе в цепь ООС придется вводить специальные устройства, компенсирующие эти изменения.

В третьих, для выбора кода существенно высокое содержание информации о тактовом синхросигнале в линейном сигнале. В приёмнике эта информация используется для восстановления фазы и частоты хронирующего колебания, необходимого для управления принятием решения в пороговом  устройстве. Осуществить синхронизацию тем проще, чем больше число переходов уровня в цифровом сигнале, то есть чем больше переходов вида 0-1 или 1-0. Лучшим с точки зрения восстановления тактовой частоты и простоты реализации схемы выделения хронирующей информации,  является сигнал, имеющий в энергетическом спектре дискретную составляющую на тактовой частоте.

В четвертых, код не должен каких-либо ограничений на передаваемое сообщение и обеспечивать однозначную передачу любой последовательности нулей и единиц.

В пятых, код должен обеспечивать возможность обнаружения и исправления ошибок. Основной величиной, характеризующей качество связи, является частость появления ошибок или коэффициент ошибок, определяемый отношением среднего количества неправильно принятых посылок к их общему числу. Контроль качества связи необходимо производить, не прерывая работу линии. Это требование предполагает использование кода, обладающего избыточностью, тогда достаточно фиксировать нарушение правил формирования кода, чтобы контролировать качество связи.

Кроме вышеперечисленных требований на выбор кода оказывает влияние простота реализации, низкое потребление энергии и малая стоимость оборудования линейного тракта.

В современных оптоволоконных системах связи для городской телефонной сети ИКМ-120-4/5 и ИКМ-480-5 для передачи в качестве линейного кода используется код CMI, отвечающий большинству вышеперечисленных требований. Особенностью данного кода является сочетание простоты кодирования и возможности выделения тактовой частоты заданной фазы с помощью узкополосного фильтра. Код строится на основе кода HDB-3 (принцип построения представлен на рис.1.4). Здесь символ +1 преобразуется в

Рис. 1.4. – Принцип построения кода СМI из HDB-3

 

кодовое слово 11, символ –1 –в кодовое слово 00, символ 0 -в 01. Из рисунка 4 видно, что для CMI характерно значительное число переходов, что свидетельствует о возможности выделения последовательности тактовых импульсов. Текущие цифровые суммы кодов имеют ограниченное значение. Это позволяет контролировать величину ошибки   достаточно простыми средствами. Число одноименных следующих друг за другом символов не превышает двух – трех. Избыточность кода CMI можно использовать для передачи служебных сигналов. Применяя для этой цели запрещенный в обычном режиме блок 10, а также нарушение чередований 11 и 00.

 

Информация о работе Волоконно - оптические линии связи