Автор работы: Пользователь скрыл имя, 08 Июня 2014 в 17:26, курсовая работа
Циклические коды являются подклассом в классе линейных блоковых кодов, удовлетворяющих определенным требованиям. Свое название данные коды получили по причине того, что основной операцией построения кодовых последовательностей (Fi(x)) является цикл, а точнее циклическая перестановка двоичных символов разрешенных кодовых последовательностей. Циклическим кодом называется линейный блоковый код, который представляет собой конечное множество, замкнутое относительно операции циклического сдвига кодовых последовательностей, образующих данный код. С математической точки зрения ЦК является идеалом в линейной коммутативной алгебре многочлена (полинома) n-го порядка по модулю двучлена xn-1 над полем коэффициентов.
ВВЕДЕНИЕ
4
1 Основные сведения о циклических кодах
5
2 Расчет параметров циклического кода
17
3 Разработка структурной схемы канального кодека циклического кода
19
3.1 Разработка структурной схемы кодера циклического кода
19
3.2 Разработка структурной схемы декодера циклического кода
20
4 Разработка функциональной схемы кодека циклического кода
23
4.1 Разработка функциональной схемы кодера
23
4.2 Разработка функциональной схемы декодера
24
5 Разработка принципиальной схемы кодека
26
5.1 Выбор и обоснование элементной базы проектируемого кодека
26
5.2 Разработка принципиальной схемы кодера
27
5.3 Разработка принципиальной схемы декодера
33
Заключение
38
Литература
Положение ключей на обратное должно меняться по окончанию 14-го такта. По окончанию 20 такта ключи кодера возвращаются в исходное состояние. Следовательно, выходной сигнал и построение логической схемы будет соответствовать уравнению .
ФСУ декодера в будет иметь вид, приведенный на рисунке 28.
Временные диаграммы, поясняющие работу логической схемы, приведены на рисунке 29.
Принципиальная схема декодера приведена в приложении В.
Рисунок 28 – ФСУ декодера
Рисунок 29 – Временные диаграммы, поясняющие работу логической схемы декодера
Заключение
В данном курсовом проекте рассмотрен алгоритм кодирования циклического кода с мажоритарным алгоритмом декодирования при формировании системы раздельных проверок, а также принципы построения структурных, функциональных и принципиальных электрических схем кодера.
Основным препятствием к широкому использованию линейных кодов, контролирующих многократные случайные и зависимые ошибки, являются большие временные и аппаратурные затраты на декодирование кодовых слов. Это связано с параллельным декодированием всего кодового слова, когда за один такт необходимо исправить ошибки во всем слове. Очевидно, что параллельное декодирование кодовых слов не требуется при последовательном приеме сообщений, характерном для большого числа каналов передачи информации. Применение последовательной обработки информации и циклических кодов приводит к процедурам кодирования и декодирования, эффективным как с алгоритмической, так и с вычислительной точки зрения.
Циклические коды являются подклассом в классе линейных кодов, удовлетворяющим дополнительному свойству цикличности. Линейные коды, удовлетворяющие этому свойству, - циклические, т.е. такие коды, которые вместе с каждым кодовым словом (α0, α1, α2, αn-1, αn) содержат также и его циклическую перестановку (α1, α2, αn-1, αn, α0). При таком определении для построения кода достаточно задать одно кодовое слово. Отдельные кодовые слова образуются из исходного путем циклического сдвига и всех линейных комбинаций циклических сдвигов.
Литература
1. Блейкут Р. Теория и практика кодов, контролирующих ошибки. - М.:Мир, 1986.
2. Кларк Дж. мл., Кейн Дж. Кодирование с исправлением ошибок в системах цифровой связи. - М.:Мир, 1987.
3. Месси Дж., Пороговое декодирование – М.: Связь, 1966.
4. Теория прикладного кодирования под ред. . Конопелько В.К. в 2 т. – Минск, БГУИР, 2004.
5. Королёв А. И. Коды и устройства помехоустойчивого кодирования информации. – Минск,: Норд, 2002.
6. Цифровые интегральные микросхемы: Справочник / под ред. М. И. Богдановича.–Минск.: Беларусь, 1991.
7. Конспект лекций: Циклические коды: Теория и практика.
ПРИЛОЖЕНИЕ
1.Приложение А - Схема кодека электрическая принципиальная.
2.Приложение В -. Схема декодера электрическая принципиальная.