Симметричные криптосистемы

Автор работы: Пользователь скрыл имя, 26 Марта 2013 в 17:36, контрольная работа

Краткое описание

Криптографические методы защиты информации в автоматизированных системах могут применяться как для защиты информации, обрабатываемой в ЭВМ или хранящейся в различного типа ЗУ, так и для закрытия информации, передаваемой между различными элементами системы по линиям связи. Криптографическое преобразование как метод предупреждения несационированного доступа к информации имеет многовековую историю. В настоящее время разработано большое колличество различных методов шифрования, созданы теоретические и практические основы их применения.

Содержание

В в е д е н и е 3
1.Симметричные криптосистемы 8
1.1. Классификация криптографических методов 8
1.2. Системы подстановок 9
1.3. Подстановка Цезаря 11
1.4.Многоалфавитные системы. Системы одноразового использования 12
1.5.Системы шифрования Вижинера 14
1.6. Гаммирование 16
1.7. Шифрование с помощью аналитических преобразований 17
1.8. Криптосистемы на основе эллиптических уравнений 18
2. Эллиптические фунции - реализация метода открытых ключей 20
2.1.Системы с открытым ключом 20
2.2. Типы криптографических услуг 22
2.3. Цифровые представления 24
2.4. Эллиптическая криптография кривой. 24
2.5.Электронные платы и код с исправлением ошибок 25
3.Описание алгоритма 27
3.1. Целочисленная проблема факторизации (IFP): RSA и Рабин-Уильям 27
3.1.1. Описание задачи 27
3.1.2. Разложения на множетели 28
3.2.Дискретная проблема логарифма (процессор передачи данных): 29
3.2.1 Описание задачи 29
3.2.2. Разложение на множетели 30
3.3.Эллиптическая кривая дискретная проблема логарифма (ECDLP) 31
3.3.1. Описание задачи 31
3.3.2. Разложения на множетели 33
3.3.3. Программные разложения фунции на множетели 34
3.3.4 Выбор основного поля Fq и эллиптической кривой E 35
3.3.5.Стандарты кода с исправлением ошибок 36
ЗАКЛЮЧЕНИЕ. 38
Список литературы. 40

Прикрепленные файлы: 1 файл

СИММЕТРИЧНЫЕ КРИПТОСИСТЕМЫ.rtf

— 424.11 Кб (Скачать документ)

1.2. Системы подстановок

Определение Подстановкой p на алфавите Zm называется автоморфизм Zm, при котором буквы исходного текста t замещены буквами шифрованного текста p(t):

Zm а Zm; p: t а p(t).

Набор всех подстановок называется симметрической группой Zm è будет в дальнейшем обозначаться как SYM(Zm).

Утверждение SYM(Zm) c операцией произведения является группой, т.е. операцией, обладающей следующими свойствами:

  1. Замкнутость: произведение подстановок p1p2 является подстановкой:

p: tаp1(p2(t)).

  1. Ассоциативность: результат произведения p1p2p3 не зависит от порядка расстановки скобок:

(p1p2)p3=p1(p2p3)

  1. Существование нейтрального элемента: постановка i, определяемая как i(t)=t, 0Јt<m, является нейтральным элементом SYM(Zm) по операции умножения: ip=pi для "pОSYM(Zm).
  2. Существование обратного: для любой подстановки p существует единственная обратная подстановка p-1, удовлетворяющая условию

pp-1=p-1p=i.

Число возможных подстановок в симметрической группе Zm называется порядком SYM(Zm) и равно m! .

Определение. Ключом подстановки k для Zm называется последовательность элементов симметрической группы Zm:

k=(p0,p1,...,pn-1,...), pnОSYM(Zm), 0Јn<Ґ

Подстановка, определяемая ключом k, является криптографическим преобразованием Tk, при помощи которого осуществляется преобразование n-граммы исходного текста (x0 ,x1 ,..,xn-1) в n-грамму шифрованного текста (y0 ,y1 ,...,yn-1):

yi=p(xi),   0Јi<n

где n - произвольное (n=1,2,..). Tk называется моноалфавитной подстановкой, если p неизменно при любом i, i=0,1,..., в  противном случае Tk называется многоалфавитной подстановкой.

Примечание. К наиболее существенным особенностям подстановки Tk относятся следующие:

1. Исходный текст шифруется посимвольно. Шифрования n-граммы (x0 ,x1 ,..,xn-1) и ее префикса (x0 ,x1 ,..,xs-1) связаны соотношениями

Tk(x0 ,x1 ,..,xn-1)=(y0 ,y1 ,...,yn-1)

Tk(x0 ,x1 ,..,xs-1)=(y0 ,y1 ,...,ys-1)

2. Буква шифрованного текста yi является функцией только i-й компоненты ключа pi  и i-й буквы исходного текста xi.

1.3. Подстановка Цезаря

Подстановка Цезаря является самым простым вариантом подстановки. Она относится к группе моноалфавитных подстановок.

Определение. Подмножество Cm={Ck: 0Јk<m} симметрической группы SYM(Zm), содержащее m подстановок

Ck: j®(j+k) (mod m), 0Јk < m,

называется подстановкой Цезаря.

Умножение коммутативно, CkCj=CjCk=Cj+k, C0 - идентичная подстановка, а обратной к Cк является Ck-1=Cm-k, где 0<k<m. Семейство подстановок Цезаря названо по имени римского императора Гая Юлия Цезаря, который поручал Марку Туллию Цицерону составлять послания с использованием 50-буквенного алфавита и подстановки C3.

Подстановка определяется по таблице замещения, содержащей пары соответствующих букв “исходный текст - шифрованный текст”. Для C3 подстановки приведены в Табл. 1. Стрелка (а) означает, что буква исходного текста (слева) шифруется при помощи C3 в букву шифрованного текста (справа).

Определение. Системой Цезаря называется моноалфавитная подстановка, преобразующая n-грамму исходного текста (x0, x1 ,..,xn-1) в n-грамму шифрованного текста (y0 ,y1 ,...,yn-1) в соответствии с правилом

yi=Ck(xi), 0Јi<n.

Например, ВЫШЛИТЕ_НОВЫЕ_УКАЗАНИЯ посредством подстановки C3 преобразуется в еюыолхиврсеюивцнгкгрлб.

Ааг

Йам

Тах

Ыаю

Бад

Кан

Уац

Ьая

Вае

Лао

Фач

Эа_

Гаж

Мап

Хаш

Юаа

Даз

Нар

Цащ

Яаб

Еаи

Оас

Чаъ

_ав

Жай

Пат

Шаы

 

Зак

Рау

Щаь

 

Иал

Саф

Ъаэ

 

 

Таблица 1.1: Применение подстановки Цезвря.

При своей несложности система легко уязвима. Если злоумышленник имеет

1) шифрованный и соответствующий исходный текст или

2) шифрованный текст выбранного злоумышленником исходного текста,

то определение ключа и дешифрование исходного текста тривиальны.

Более эффективны обобщения подстановки Цезаря - шифр Хилла и шифр Плэйфера. Они основаны на подстановке не отдельных символов, а 2-грамм (шифр Плэйфера) или n-грамм2 (шифр Хилла). При более высокой криптостойкости они значительно сложнее для реализации и требуют достаточно большого количества ключевой информации.

1.4.Многоалфавитные системы. Системы одноразового использования

Слабая криптостойкость моноалфавитных подстановок преодолевается с применением подстановок многоалфавитных.

Многоалфавитная подстановка определяется ключом p=(p1,  
p2, ...), содержащим не менее двух различных подстановок. В начале рассмотрим многоалфавитные системы подстановок с нулевым начальным смещением. Пусть {Ki: 0Јi<n} - независимые случайные переменные с одинаковым распределением вероятностей,

принимающие значения на множестве Zm

Pкл{(K0, K1, ..., Kn-1)=(k0, k1, ..., kn-1)}=(1/m)n

Система одноразового использования преобразует исходный текст

X=(X0, x1, ..., xn-1)

в шифрованный текст

Y=(Y0, y1, ..., yn-1)

при помощи подстановки Цезаря

Yi=CKi(xi)=(Ki+Xi) (mod m)   i=0...n-1                            (1)

Для такой системы подстановки используют также термин “одноразовая лента” и “одноразовый блокнот”. Пространство ключей К системы одноразовой подстановки является вектором рангов (K0, K1, ..., Kn-1) и содержит mn точек.

Рассмотрим небольшой пример шифрования с бесконечным ключом. В качестве ключа примем текст

“БЕСКОНЕЧНЫЙ_КЛЮЧ....”.

Зашифруем с его помощью текст “ШИФР_НЕРАСКРЫВАЕМ”. Шифрование оформим в таблицу:

 

ШИФРУЕМЫЙ_ТЕКСТ

24

8

20

16

19

5

12

27

9

32

18

5

10

17

18

БЕСКОНЕЧНЫЙ_КЛЮЧ

1

5

17

10

14

13

5

23

13

27

9

32

10

11

30

ЩРДЪАТТССЦЪЫДФЬП

25

13

4

26

0

18

17

17

22

26

27

4

20

28

15


 

Исходный текст невозможно восстановить без ключа.

Наложение белого шума в виде бесконечного ключа на исходный текст меняет статистические характеристики языка источника. Системы одноразового использования теоретически не расшифруемы3, òàê êàê íå ñîäåðæàò äîñòàòî÷íîé èíôîðìàöèè äëÿ âîññòàíîâëåíèÿ òåêñòà.

Почему же эти системы неприменимы для обеспечения секретности при обработке информации? Ответ простой - они непрактичны, так как требуют независимого выбора значения ключа для каждой буквы исходного текста. Хотя такое требование может быть и не слишком трудным при передаче по прямому кабелю Москва - Нью-Йорк, но для информационных оно непосильно, поскольку там придется шифровать многие миллионы знаков.

Посмотрим, что получится, если ослабить требование шифровать каждую букву исходного текста отдельным значением ключа.

1.5.Системы шифрования Вижинера

Начнем с конечной последовательности ключа

 k = (k0 ,k1 ,...,kn),

которая называется ключом пользователя, и продлим ее до бесконечной последовательности, повторяя цепочку. Таким образом, получим рабочий ключ

k = (k0 ,k1 ,...,kn), kj = k(j mod r, 0 Ј j < Ґ .

Например, при r = Ґ и ключе пользователя 15 8 2 10 11 4 18 рабочий ключ будет периодической последовательностью:

15 8 2 10 11 4 18 15 8 2 10 11 4 18 15 8 2 10 11 4 18 ...

 

Определение. Подстановка Вижинера VIGk определяется как

VIGk : (x0, x1, ..., xn-1) ® (y0, y1, ..., yn-1) = (x0+k, x1+k,. .., xn-1+k).

Таким образом:

1) исходный текст x делится на r фрагментов

xi = (xi , xi+r , ..., xi+r(n-1)), 0 Ј i < r;

2) i-й фрагмент исходного текста xi шифруется при помощи подстановки Цезаря Ck :

(xi , xi+r , ..., xi+r(n-1)) ® (yi , yi+r , ..., yi+r(n-1)),

 

Вариант системы подстановок Вижинера при m=2 называется системой Вернама (1917 г). В то время ключ k=(k0 ,k1 ,...,kк-1) записывался на бумажной ленте. Каждая буква исходного переводилась с использованием кода Бодо в пятибитовый символ. К исходному тексту Бодо добавлялся ключ (по модулю 2). Старинный телетайп фирмы AT&T со считывающим устройством Вернама и оборудованием для шифрования, использовался корпусом связи армии США.

Очень распространена плохая с точки зрения секретности практика использовать слово или фразу в качестве ключа для того, чтобы k=(k0 ,k1 ,...,kк-1) было легко запомнить. В ИС для обеспечения безопасности информации это недопустимо. Для получения ключей должны использоваться программные или аппаратные средства случайной генерации ключей.

Пример. Преобразование текста с помощью подстановки Вижинера (r=4)

Исходный текст (ИТ1):

НЕ_СЛЕДУЕТ_ВЫБИРАТЬ_НЕСЛУЧАЙНЫЙ_КЛЮЧ

Ключ: КЛЮЧ

Разобьем исходный текст на блоки по 4 символа:

НЕ_С ЛЕДУ ЕТ_В ЫБИР АТЬ_ НЕСЛ УЧАЙ НЫЙ_ КЛЮЧ

и наложим на них ключ (используя таблицу Вижинера):

H+К=Ч, Е+Л=Р и т.д.

Получаем зашифрованный (ЗТ1) текст:

ЧРЭЗ ХРБЙ ПЭЭЩ ДМЕЖ КЭЩЦ ЧРОБ ЭБЮ_ ЧЕЖЦ ФЦЫН

Можно выдвинуть и обобщенную систему Вижинера. ЕЕ можно сформулировать не только при помощи подстановки Цезаря.

Пусть x - подмножество симметрической группы SYM(Zm).

Определение. r-многоалфавитный ключ шифрования есть r-набор p = (p0, p1, ..., pr-1) с элементами в x.

Обобщенная система Вижинера преобразует исходный текст (x0, x1 ,..., xn-1) в шифрованный текст (y0 ,y1 ,...,yn-1) при помощи ключа p = (p0, p1, ..., pr-1) по правилу

VIGk : (x0 ,x1 ,...,xn-1) ® (y0 ,y1 ,...,yn-1) = (p00), p11), ..., pn-1(xn-1)), где используется условие pi = pi mod r. Следует признать, что и многоалфавитные подстановки в принципе доступны криптоаналитическому исследованию. Криптостойкость многоалфавитных систем резко убывает с уменьшением длины ключа.

Тем не менее такая система как шифр Вижинера допускает несложную аппаратную или программную реализацию и при достаточно большой длине ключа может быть использован в современных ИС.

1.6. Гаммирование

Гаммирование является также широко применяемым криптографическим преобразованием. На самом деле граница между гаммированием и использованием бесконечных ключей и шифров Вижинера, о которых речь шла выше, весьма условная.

Принцип шифрования гаммированием заключается в генерации гаммы шифра с помощью датчика псевдослучайных чисел и наложении полученной гаммы на открытые данные обратимым образом (например, используя сложение по модулю 2).

Процесс дешифрования данных сводится к повторной генерации гаммы шифра при известном ключе и наложении такой гаммы на зашифрованные данные.

Полученный зашифрованный текст является достаточно трудным для раскрытия в том случае, если гамма шифра не содержит повторяющихся битовых последовательностей. По сути дела гамма шифра должна изменяться случайным образом для каждого шифруемого слова. Фактически же, если период гаммы превышает длину всего зашифрованного текста и неизвестна никакая часть исходного текста, то шифр можно раскрыть только прямым перебором (пробой на ключ). Криптостойкость в этом случае определяется размером ключа.

Информация о работе Симметричные криптосистемы