Автор работы: Пользователь скрыл имя, 17 Января 2013 в 09:54, контрольная работа
1. Структура IP – адреса. Понятие маски подсети. Серые и белые IP – адреса.
2. Аппаратные средства вычислительных сетей: состав, назначение.
3. Выполнить поиск в Internet по темам:
системная шина. Понятие интерфейса системной шины. Особенности интерфейсов USB, IEEE1394, SCSI;
тема выбирается из предлагаемого списка;
тема поиска выбирается самостоятельно
Принцип действия компьютера
В определении компьютера,
как прибора, мы указали определяющий
признак - электронный. Однако автоматические
вычисления не всегда производились
электронными устройствами. Известны
и механические устройства, способные
выполнять расчеты
Анализируя раннюю историю вычислительной техники, некоторые зарубежные исследователи нередко в качестве древнего предшественника компьютера называют механическое счетное устройство абак. Подход “от абака” свидетельствует о глубоком методическом заблуждении, поскольку абак не обладает свойством автоматического выполнения вычислений, а для компьютера оно определяющее.
Абак — наиболее раннее счетное механическое устройство, первоначально представлявшее собой глиняную пластину с желобами, в которых раскладывались камни, представляющие числа. Появление абака относят к четвертому тысячелетию до н. э. Местом появления считается Азия. В средние века в Европе абак сменился разграфлеными таблицами. Вычисления с их помощью называли счетом на линиях, а в России в XVI-XVII веках. появилось намного более передовое изобретение, применяющееся и поныне — русские счеты.
В то же время нам хорошо знаком другой прибор, способный автоматически выполнять вычисления, — это часы. Независимо от принципа действия, все виды часов (песочные, водяные, механические, электрические, электронные и др.) обладают способностью генерировать через равные промежутки времени перемещения или сигналы и регистрировать возникающие при этом изменения, то есть выполнять автоматическое суммирование сигналов или перемещений. Этот принцип прослеживается даже в солнечных часах, содержащих только устройство регистрации (роль генератора выполняет система Земля — Солнце).
Механические часы — прибор, состоящий из устройства, автоматически выполняющего перемещения через равные заданные интервалы времени и устройства регистрации этих перемещений. Место появления первых механических часов неизвестно. Наиболее ранние образцы относятся к XIV веку и принадлежат монастырям (башенные часы).
В основе любого современного
компьютера, как и в электронных
часах, лежит тактовый генератор, вырабатывающий
через равные интервалы времени
электрические сигналы, которые
используются для приведения в действие
всех устройств компьютерной системы.
Управление компьютером фактически
сводится к управлению распределением
сигналов между устройствами. Такое
управление может производиться
автоматически (в этом случае говорят
о программном управлении) или
вручную с помощью внешних
органов управления — кнопок, переключателей,
перемычек и т. п. (в ранних моделях).
В современных компьютерах
Механические первоисточники
Первое в мире автоматическое устройство для выполнения операции сложения было создано на базе механических часов. В 1623 году его разработал Вильгельм Шикард, профессор кафедры восточных языков в университете Тьюбингена (Германия). В наши дни рабочая модель устройства была воспроизведена по чертежам и подтвердила свою работоспособность. Сам изобретатель в письмах называл машину «суммирующими часами».
В 1642 году французский механик Блез Паскаль (1623-1662) разработал более компактное суммирующее устройство, которое стало первым в мире механическим калькулятором, выпускавшимся серийно (главным образом для нужд парижских ростовщиков и менял). В 1673 году немецкий математик и философ Г. В. Лейбниц (1646-1717) создал механический калькулятор, который мог выполнять операции умножения и деления путем многократного повторения операций сложения и вычитания.
На протяжении XVIII века, известного
как эпоха Просвещения, появились
новые, более совершенные модели,
но принцип механического
Этот шаг был сделан выдающимся английским математиком и изобретателем Чарльзом Бэббиджем (1792-1871) в его Аналитической машине, которая, к сожалению, так и не была до конца построена изобретателем при жизни, но была воспроизведена в наши дни по его чертежам, так что сегодня мы вправе говорить об Аналитической машине, как о реально существующем устройстве. Особенностью Аналитической машины стало то, что здесь впервые был реализован принцип разделения информации на команды и данные. Аналитическая машина содержала два крупных узла — «склад» и «мельницу». Данные вводились в механическую память «склада» путем установки блоков шестерен, а потом обрабатывались в «мельнице» с использованием команд, которые вводились с перфорированных карт (как в ткацком станке Жаккарда).
Исследователи творчества Чарльза Бэббиджа непременно отмечают особую роль в разработке проекта Аналитической машины графини Огасты Ады Лавлейс (1815-1852) дочери известного поэта лорда Байрона. Именно ей принадлежала идея использования перфорированных карт для программирования вычислительных операций (1843). В частности, в одном из писем она писала: «Аналитическая машина точно так же плетет алгебраические узоры, как ткацкий станок воспроизводит цветы и листья». Леди Аду можно с полным основанием назвать самым первым в мире программистом. Сегодня ее именем назван один из известных языков программирования.
Математические первоисточники
Если мы задумаемся над
тем, с какими объектами работали
первые механические предшественники
современного электронного компьютера,
то должны признать что числа представлялись
либо в виде линейных перемещений
цепных и реечных механизмов, либо
в виде угловых перемещений зубчатых
и рычажных механизмов. И в том
и в другом случае это были перемещения,
что не могло не сказываться на
габаритах устройств и на скорости
их работы. Только переход от регистрации
перемещений к регистрации
Двоичная система Лейбница.
В механических устройствах зубчатые
колеса могут иметь достаточно много
фиксированных и, главное, различимых
между собой положений. Количество
таких положений, по крайней мере,
равно числу зубьев шестерни. В
электрических и электронных
устройствах речь идет не о регистрации
положений элементов
Возможность представления любых чисел (да и не только чисел) двоичными цифрами впервые была предложена Готфридом Вильгельмом Лейбницем в 1666 году. Он пришел к двоичной системе счисления, занимаясь исследованиями философской концепции единства и борьбы противоположностей. Попытка представить мироздание в виде непрерывного взаимодействия двух начал («черного» и «белого», мужского и женского, добра и зла) и применить к его изучению методы «чистой» математики подтолкнули Лейбница к изучению свойств двоичного представления данных с помощью нулей и единиц. Надо сказать, что Лейбницу уже тогда приходила в голову мысль о возможности использования двоичной системы в вычислительном устройстве, но, поскольку для механических устройств в этом не было никакой необходимости, он не стал использовать в своем калькуляторе (1673 году) принципы двоичной системы.
Математическая логика Джорджа
Буля. Говоря о творчестве Джорджа
Буля, исследователи истории
Занимаясь исследованием
законов мышления, он применил в
логике систему формальных обозначений
и правил, близкую к математической.
Впоследствии эту систему назвали
логической алгеброй или булевой
алгеброй. Правила этой системы применимы
к самым разнообразным объектам
и их группам (множествам, по терминологии
автора). Основное назначение системы,
по замыслу Дж. Буля, состояло в том,
чтобы кодировать логические высказывания
и сводить структуры логических
умозаключений к простым
Значение логической алгебры долгое время игнорировалось, поскольку ее приемы и методы не содержали практической пользы для науки и техники того времени. Однако, когда появилась принципиальная возможность создания средств вычислительной техники на электронной базе, операции, введенные Булем, оказались весьма полезны. Они изначально ориентированы на работу только с двумя сущностями: истина и ложь. Нетрудно понять, как они пригодились для работы с двоичным кодом, который в современных компьютерах тоже представляется всего двумя сигналами: ноль и единица.
Не вся система Джорджа Буля (как и не все предложенные им логические операции) были использованы при создании электронных вычислительных машин, но четыре основные операции: И (пересечение), ИЛИ (объединение), НЕ (обращение) и ИСКЛЮЧАЮЩЕЕ ИЛИ — лежат в основе работы всех видов процессоров современных компьютеров.
Методы классификации компьютеров
Существует достаточно много систем классификации компьютеров. Мы рассмотрим лишь некоторые из них, сосредоточившись на тех, о которых наиболее часто упоминают в доступной технической литературе и средствах массовой информации.
Классификация по назначению
Классификация по назначению — один из наиболее ранних методов классификации. Он связан с тем, как компьютер применяется. По этому принципу различают большие ЭВМ (электронно-вычислительные машины), мини-ЭВМ, микро-ЭВМ и персональные компьютеры, которые, в свою очередь, подразделяют на массовые, деловые, портативные, развлекательные и рабочие станции.
Большие ЭВМ. Это самые мощные компьютеры. Их применяют для обслуживания очень крупных организаций и даже целых отраслей народного хозяйства. За рубежом компьютеры этого класса называют мэйнфреймами (mainframe). В России за ними закрепился термин большие ЭВМ. Штат обслуживания большой ЭВМ составляет до многих десятков человек. На базе таких суперкомпьютеров создают вычислительные центры, включающие в себя несколько отделов или групп.
Рис. 2.1. Структура современного вычислительного центра на базе большой ЭВМ
Центральный процессор — основной блок ЭВМ, в котором непосредственно и происходит обработка данных и вычисление результатов. Обычно центральный процессор представляет собой несколько стоек аппаратуры и размещается в отдельном помещении, в котором соблюдаются повышенные требования по температуре, влажности, защищенности от электромагнитных помех, пыли и дыма.
Группа системного программирования занимается разработкой, отладкой и внедрением программного обеспечения, необходимого для функционирования самой вычислительной системы. Работников этой группы называют системными программистами. Они должны хорошо знать техническое устройство всех компонентов ЭВМ, поскольку их программы предназначены в первую очередь для управления физическими устройствами. Системные программы обеспечивают взаимодействие программ более высокого уровня с оборудованием, то есть группа системного программирования обеспечивает программно-аппаратный интерфейс вычислительной системы.
Группа прикладного
Группа подготовки данных
занимается подготовкой данных, с
которыми будут работать программы,
созданные прикладными
Группа технического обеспечения занимается техническим обслуживанием всей вычислительной системы, ремонтом и наладкой устройств, а также подключением новых устройств, необходимых для работы прочих подразделений.
Группа информационного обеспечения обеспечивает технической информацией все прочие подразделения вычислительного центра по их заказу. Эта же группа создает и хранит архивы ранее разработанных программ и накопленных данных. Такие архивы называют библиотеками программ или банками данных.
Отдел выдачи данных получает данные от центрального процессора и преобразует их в форму, удобную для заказчика. Здесь информация распечатывается на печатающих устройствах (принтерах) или отображается на экранах дисплеев.
Большие ЭВМ отличаются высокой
стоимостью оборудования и обслуживания,
поэтому работа таких суперкомпьютеров
организована по непрерывному циклу. Наиболее
трудоемкие и продолжительные вычисления
планируют на ночные часы, когда
количество обслуживающего персонала
минимально. В дневное время ЭВМ
исполняет менее трудоемкие, но более
многочисленные задачи. При этом для
повышения эффективности