Конспект лекций по дисциплине «Сетевые технологии»

Автор работы: Пользователь скрыл имя, 10 Сентября 2015 в 12:34, курс лекций

Краткое описание

Работа содержит конспект лекций по дисциплине «Сетевые технологии».

Прикрепленные файлы: 1 файл

Конспект лекций по дисциплине «сетевые технологии» (дополненная .doc

— 2.08 Мб (Скачать документ)

Увеличения пропускной способности при неизменном методе доступа в Fast Ethernet удалось достигнуть за счет усовершенствования средств физического уровня. Рассмотрим физический уровень технологии Fast Ethernet

Физический уровень технологии Fast Ethernet

Все отличия технологии Fast Ethernet от Ethernet сосредоточены на физическом уровне. Уровни MAC и LLC в Fast Ethernet остались абсолютно теми же, и их описывают прежние главы стандартов 802.3 и 802.2.

Технология Fast Ethernet использует три варианта кабельных систем:

  • волоконно-оптический многомодовый кабель, используются два волокна;
  • витая пара категории 5, используются две пары;
  • витая пара категории 3, используются четыре пары.

Коаксиальный кабель, давший миру первую сеть Ethernet, в этот перечень вообще не попал. От коаксиальных кабелей стремятся избавиться все новые технологии. Поскольку на небольших расстояниях, витая пара категории 5 позволяет передавать данные с той же скоростью, что и коаксиальный кабель, а сеть при этом получается более дешевой и удобной в эксплуатации. На больших же расстояниях применяют оптическое волокно, которое обладает гораздо более широкой полосой пропускания, чем коаксиал, а стоимость сети получается ненамного выше, особенно если учесть высокие затраты на поиск и устранение неисправностей в крупной кабельной коаксиальной системе.

Сети Fast Ethernet всегда имеют иерархическую древовидную структуру, построенную на концентраторах, как и сети стандартов 10Base-T и 10Base-F, которые мы рассматривали в предыдущем разделе.

Таким образом, официальный стандарт 802.3u установил три различных спецификации для физического уровня Fast Ethernet и дал им следующие названия:

  • 100Base-TX - для двухпарного кабеля на неэкранированной витой паре UTP категории 5 или экранированной витой паре STP Type 1;
  • 100Base-T4 - для четырехпарного кабеля на неэкранированной витой паре UTP категории 3, 4 или 5;
  • 100Base-FX- для многомодового оптоволоконного кабеля, используются два волокна.

По сравнению с вариантами физической реализации Ethernet (10Base-5, 10Base-2, 10Base-T, 10Base-F), в технологии Fast Ethernet отличия одного варианта от другого намного глубже. Различные физические спецификации имеют различное количество проводников и различные методы кодирования.

Для всех трех стандартов Fast Ethernet справедливы следующие характеристики:

форматы кадров технологии Fast Ethernet практически не отличаются от форматов кадров технологий 10-мегабитного Ethernet.

межкадровый интервал (IPG) равен 0,96 мкс, а битовый интервал равен 10 нс, соответственно время передачи кадра минимальной длины равно 5,75 мкс. Все временные параметры алгоритма доступа (интервал отсрочки, время передачи кадра минимальной длины и т. п.) в битовых интервалах, остались прежними.

признаком свободного состояния среды является передача по ней последовательности символов - Idle, а не отсутствие сигналов, как в стандартах Ethernet 10 Мбит/с.

Для сравнения следующий рисунок показывает общее отличие кадров Fast Ethernet от кадров 10-мегабитного Ethernet.

Рис. 7.4 Форматы кадров Fast Ethernet и Ethernet

 

Рассмотрим физические спецификации, которые предложила технология Fast Ethernet.

1. 100Base-FX - многомодовое оптоволокно, два волокна

Эта спецификация определяет работу протокола Fast Ethernet по многомодовому оптоволокну. Каждый узел соединяется с сетью двумя оптическими волокнами, идущими от приемника (Rх) и от передатчика (Тх).

Следует сразу отметить, что между спецификациями 100Base-FX и 100Base-TX есть много общего, поэтому общие для этих двух спецификаций свойства мы будем рассматривать под обобщенным названием 100Base-FX/TX.

Все стандарты физического уровня Ethernet со скоростью передачи 10 Мбит/с для представления данных при передаче по кабелю используют манчестерское кодирование. В стандарте Fast Ethernet в спецификации 100Base-FX/TX используется другой метод - кодирование избыточными кодами - 4В/5В.

Вспомним некоторые особенности 4В/5В. При этом методе каждые 4 бита данных подуровня MAC (называемых символами) представляются 5 битами. Избыточный бит позволяет потом применить потенциальные коды при представлении каждого из пяти бит в виде электрических или оптических импульсов для непосредственной передачи по кабелю. Потенциальные коды по сравнению с манчестерскими кодами имеют более узкий спектр сигнала, а, следовательно, предъявляют меньшие требования к полосе пропускания кабеля. Но использовать "чистые" потенциальные коды для передачи данных невозможно использовать из-за плохой самосинхронизации приемника и источника данных: при передаче длинной последовательности единиц или нулей в течение долгого времени сигнал не изменяется и приемник не может определить момент чтения очередного бита. Применение избыточного кода решает проблему длительной последовательности нулей.

При использовании пяти бит для кодирования шестнадцати исходных 4-х битовых комбинаций, можно построить такую таблицу кодирования, в которой любой исходный 4-х битовый код представляется 5-ти битовым кодом с чередующимися нулями и единицами. Тем самым обеспечивается синхронизация приемника с передатчиком.

Так как из 32 возможных комбинаций 5-битовых порций для кодирования порций исходных данных нужно только 16, то остальные 16 комбинаций в коде 4В/5B используются в служебных целях.

Наличие служебных символов позволило использовать в спецификациях FX/TX схему непрерывного обмена сигналами между передатчиком и приемником и при свободном состоянии среды. И если в сетях Ethernet незанятое состояние среды означало полное отсутствие на ней импульсов информации. То для Fast Ethernet для обозначения незанятого состояния среды используется служебный символ Idle (11111), которыми постоянно обмениваются передатчик с приемником. Этот специфический символ (запрещенная комбинация) поддерживает синхронизм передатчика и приемника в периодах между передачами информации, а также позволяет контролировать общее физическое состояние линии.

Рис. 7.5 Обмен служебными символами Idle

 

Существование запрещенных комбинаций символов позволяет отбраковывать ошибочные символы, и это существенно повышает устойчивость работы сетей с 100Base-FX/TX уже на самом низком - физическом уровне, а значит, приводит к увеличению эффективности сети в целом.

Для отделения кадра Ethernet от символов Idle используется комбинация символов Start Delimiter (пара символов J (11000) и К (10001) кода 4В/5В, а после завершения кадра перед первым символом Idle вставляется символ Т. Надо отметить, что коды 4В/5В построены так, что гарантируют не более трех нулей подряд при любом сочетании бит в исходной информации, поэтому длительные последовательности нулей здесь исключены.

Рис. 7.5 Структура кадра для спецификаций 100Base-FX/TX.

 

Однако по кабелю все-таки передаются электрические сигналы, а не биты информации. Поэтому, после преобразования 4-битовых порций кодов MAC в 5-битовые порции физического уровня, когда решилась проблема синхронизации приемника и передатчика при передаче кадров, их теперь нужно представить в виде оптических или электрических сигналов в кабеле, соединяющем узлы сети. Тут спецификации 100Base-FX и 100Base-TX расходятся в методах. И используют для этого различные методы физического кодирования - NRZI и MLT-3 соответственно.

Вспомним, что NRZI - это код без возврата к нулю с инвертированием для единиц. Но он в отличие от NRZ, для представления 1 и 0 использует дифференциальное кодирование: если текущий бит имеет значение 1, то текущий потенциал представляет собой инверсию потенциала предыдущего бита, независимо от его значения, если же текущий бит имеет значение 0, то текущий потенциал повторяет предыдущий. Этот метод поборол проблему длинных последовательностей единиц, которая была в NRZ, но оставил проблему длинных последовательностей нулей. Но эти последовательности в спецификации 100Base-FX, как и в 100Base-ТX предварительно устраняются кодированием 4B/5B.

Метод MLT3 еще более быстрый, по сравнению с методом NRZI, хотя и использует три уровня и он используется спецификации 100Base-ТX.

2. 100Base-TX - витая пара UTP Cat 5 или STP Type 1, две пары

В качестве среды передачи данных спецификация 100Base-TX использует неэкранированную витую витую пару UTP категории 5 или экранированную витую пару STP Type 1. Максимальная длина кабеля в обоих случаях - 100 м.

Самая отличительная возможность физического стандарта 100Base-TX - наличие специальной функции автопереговоров (Auto-negotiation). Она предназначена для согласованной работы Fast Ethernet со стандартами Ethernet. Схема автопереговоров позволяет двум соединенным физически устройствам, которые поддерживают несколько стандартов физического уровня, отличающихся битовой скоростью и количеством витых пар, выбрать наиболее выгодный режим работы. Обычно процедура автопереговоров происходит при подсоединении сетевого адаптера, который может работать на скоростях 10 и 100 Мбит/с, к концентратору или коммутатору. Схема Auto-negotiation сегодня является стандартом и технологии 100Base-T. До этого производители применяли различные собственные схемы автоматического определения скорости работы взаимодействующих портов, которые не были совместимы.

Принятую в качестве стандарта схему Auto-negotiation предложила первоначально компания National Semiconductor под названием NWay.

Всего в настоящее время определено 5 различных режимов работы, которые могут поддерживать устройства стандарта 100Base-TX или 100Base-T4 на витых парах:

  • 10Base-T - работа с 2-мя парами категории 3;
  • 10Base-T full duplex - работа с 2-мя парами категории 3 в полнодуплексном режиме
  • 100Base-TX - используются 2 витые пары категории 5 (или Type 1A STP);
  • 100Base-T4 - используются 4 витые пары категории 3;
  • 100Base-TX full-duplex – работа с 2-мя витыми парами категории 5 (или Type 1A STP) в полнодуплексном режиме.

Режим 10Base-T имеет самый низкий приоритет при переговорном процессе, а полнодуплексный режим 100Base-T4 - самый высокий.

Переговорный процесс начинается, как только устройство (сетевой адаптер, концентратор, коммутатор) включается в сеть питания. Устройство, начавшее процесс auto-negotiation, посылает своему партнеру пачку специальных импульсов Fast Link Pulse burst (FLP). Эти импульсы содержат 8-битное слово, которое определяет, в каком режиме нужно установить взаимодействие. Если узел-партнер поддерживает функцию auto-negotuiation и также может поддерживать предложенный режим, он отвечает также пачкой импульсов FLP, в которой подтверждает данный режим, и на этом переговоры заканчиваются. Но, если же узел-партнер может поддерживать менее приоритетный режим, то он указывает его в ответе, и этот режим выбирается в качестве рабочего. Таким образом, всегда выбирается наиболее приоритетный общий режим узлов.

3. 100Base-T4 - витая пара UTP Cat 3, четыре пары

Спецификация 100Base-T4 появилась позже всех других спецификаций физического уровня Fast Ethernet. Спецификация 100Base-T4 была разработана для того, чтобы можно было использовать уже имеющуюся проводку на витой паре категории 3. Общую пропускную способность эта спецификация позволяет повысить за счет одновременной передачи потоков бит по всем 4 парам кабеля. Вместо кодирования 4В/5В в этом методе используется кодирование 8В/6Т, которое обладает более узким спектром сигнала и при скорости 33 Мбит/с укладывается в полосу 16 МГц витой пары категории 3 (при кодировании 4В/5В спектр сигнала в эту полосу не укладывается).

При методе кодирования 8В/6Т каждые 8 бит данных уровня MAC кодируются 6-ю троичными цифрами, то есть цифрами, имеющими три состояния. Каждая такая троичная цифра имеет длительность 40 нс. Группа из 6-ти троичных цифр затем передается на одну из трех передающих витых пар, независимо и последовательно. Четвертая пара всегда используется для прослушивания несущей частоты в целях обнаружения коллизии.

Скорость передачи данных по каждой из трех передающих пар равна 33,3 Мбит/с, поэтому общая скорость протокола 100Base-T4 составляет 100 Мбит/с. На рисунке 7.6 приведен пример подключения устройств по стандарту 100Base-T4. Пара 1-2 всегда требуется для передачи данных от порта адаптера к порту концентратора, пара 3-6 -для приема данных портом адаптера от порта концентратора, а пары 4-5 и 7-8 являются двунаправленными и используются как для приема, так и для передачи, в зависимости от потребности.

В заключение следует заметить, что сеть Ethernet благодаря мощной поддержке, высочайшему уровню стандартизации, огромным объемам выпуска технических средств резко выделяется среди других стандартных сетей, и поэтому любую другую сетевую технологию принято сравнивать именно с Ethernet.

 

Рис. 7.6 Подключение сетевого адаптера к концентратору по 100Base-T4

 

 

7.4. Технология Gigabit Ethernet (802.3z)

Через непродолжительное время после появления на рынке продуктов Fast Ethernet сетевые администраторы почувствовали определенные ограничения при построении корпоративных сетей. Во многих случаях серверы, подключенные по 100-мегабитному каналу, сильно перегружали магистрали сетей, работающие также на скорости 100 Мбит/с - магистрали FDDI и Fast Ethernet. Стала ощущаться потребность в следующем уровне иерархии скоростей. В 1995 году более высокий уровень скорости могли предоставить только коммутаторы технологии АТМ, но она на то время еще не использовалась в локальных сетях, в частности из-за своей очень высокой стоимости. Поэтому июне 1995 года (через 5 месяцев после окончательного принятия стандарта Fast Ethernet)  исследовательской группе по изучению высокоскоростных технологий IEEE было предписано заняться рассмотрением возможности разработки стандарта Ethernet с еще более высокой битовой скоростью. Летом 1996 года было объявлено о создании группы 802.3z для разработки протокола Gigabit Ethernet, максимально подобного Ethernet, но с битовой скоростью 1000 Мбит/с.

Для работы над согласованиями усилий в Gigabit Ethernet Alliance с самого начала вошли такие лидеры сетевых разработок, как Bay Networks, Cisco Systems и 3Com. Всего за год своего существования количество участников Gigabit Ethernet Alliance существенно выросло и стало насчитывать более 100.

Первая версия стандарта Gigabit Ethernet была рассмотрена в январе 1997 года, а окончательно стандарт 802.3z был принят 29 июня 1998 года на заседании комитета IEEE 802.3. Работы по реализации Gigabit Ethernet на витой паре категории 5 были переданы специальному комитету 802.Заb, который окончательно принял стандарт 802.3ab в сентябре 1999 года.

Еще не дожидаясь принятия стандарта, 802.3z некоторые компании выпустили первое оборудование Gigabit Ethernet на оптоволоконном кабеле уже к лету 1997 года.

Как и при разработке стандарта Fast Ethernet, перед разработчиками стандарта Gigabit Ethernet была поставлена задача максимально сохранить простоту идей классической технологии Ethernet, но при этом достигнуть битовой скорости в 1000 Мбит/с. И нужно сразу отметить, что здесь пришлось принимать более кардинальные меры, чем просто изменение физической среды, как было у 100-мегабитного стандарта Fast Ethernet.

Такой огромный запас пропускной способности сети, предполагал большие перспективы по сокращению проблем, которые были сильно выражены в сетях Ethernet.

Информация о работе Конспект лекций по дисциплине «Сетевые технологии»