Конспект лекций по дисциплине «Сетевые технологии»

Автор работы: Пользователь скрыл имя, 10 Сентября 2015 в 12:34, курс лекций

Краткое описание

Работа содержит конспект лекций по дисциплине «Сетевые технологии».

Прикрепленные файлы: 1 файл

Конспект лекций по дисциплине «сетевые технологии» (дополненная .doc

— 2.08 Мб (Скачать документ)

В надежных сетях, когда кадры искажаются и теряются редко, для повышения скорости обмена данными размер окна нужно увеличивать, так как при этом передатчик будет посылать кадры с меньшими паузами. В ненадежных сетях размер окна следует уменьшать, так как при частых потерях и искажениях кадров резко возрастает объем вторично передаваемых через сеть кадров, а значит, пропускная способность сети будет расходоваться во многом вхолостую - полезная пропускная способность сети будет падать.

Выбор тайм-аута зависит не от надежности сети, а от задержек передачи кадров сетью. Во многих реализациях метода скользящего окна величина окна и тайм-аут выбираются адаптивно, в зависимости от текущего состояния сети.

 

6.4. Методы обнаружения ошибок на канальному уровне.

После того, как мы выяснили, какими средствами располагает канальный уровень для коррекции ошибок при передаче, очевидно, нам нужно познакомится и с его методами их обнаружения.

Канальный уровень должен обнаруживать ошибки передачи данных, связанные с искажением бит в принятом кадре данных или с потерей кадра, и по возможности их корректировать.

Большая часть протоколов канального уровня выполняет только первую задачу - обнаружение ошибок, считая, что корректировать ошибки, то есть повторно передавать данные, содержавшие искаженную информацию, должны протоколы верхних уровней.

Однако существуют протоколы канального уровня, которые самостоятельно решают задачу восстановления искаженных или потерянных кадров.

Очевидно, что протоколы должны работать наиболее эффективно в типичных условиях работы сети. Поэтому для сетей, в которых искажения и потери кадров являются очень редкими событиями, разрабатываются протоколы, в которых не предусматриваются процедуры устранения ошибок. Действительно, наличие процедур восстановления данных потребовало бы от конечных узлов дополнительных вычислительных затрат, которые в условиях надежной работы сети являлись бы избыточными.

Напротив, если в сети искажения и потери случаются часто, то желательно уже на канальном уровне использовать протокол с коррекцией ошибок, а не оставлять эту работу протоколам верхних уровней. Протоколы верхних уровней, например транспортного или прикладного, работая с большими тайм-аутами, восстановят потерянные данные с большой задержкой.

Поэтому нельзя считать, что один протокол лучше другого потому, что он восстанавливает ошибочные кадры, а другой протокол - нет. Каждый протокол должен работать в тех условиях, для которых он разработан.

Все методы обнаружения ошибок на канальном уровне основаны на передаче в составе кадра данных служебной избыточной информации, по которой можно судить с некоторой степенью вероятности о достоверности принятых данных. Эту служебную информацию принято называть контрольной суммой или (последовательностью контроля кадра - Frame Check Sequence, FCS).

Контрольная сумма вычисляется как функция от основной информации, причем необязательно только путем суммирования. Принимающая сторона повторно вычисляет контрольную сумму кадра по известному алгоритму и в случае ее совпадения с контрольной суммой, вычисленной передающей стороной, делает вывод о том, что данные были переданы через сеть корректно.

Существует несколько распространенных алгоритмов вычисления контрольной суммы, отличающихся вычислительной сложностью и способностью обнаруживать ошибки в данных.

Контроль по паритету . Этот метод представляет собой наиболее простой метод контроля данных и наименее мощный алгоритм контроля, так как с его помощью можно обнаружить только одиночные ошибки в проверяемых данных. Метод заключается в суммировании по модулю 2 всех бит контролируемой информации. Например, для данных 100101011 результатом контрольного суммирования будет значение 1.

Результат суммирования также представляет собой один бит данных, который пересылается вместе с контролируемой информацией. При искажении при пересылке любого одного бита исходных данных (или контрольного разряда) результат суммирования будет отличаться от принятого контрольного разряда, что говорит об ошибке.

Однако двойная ошибка, например 110101010, будет неверно принята за корректные данные. Поэтому контроль по паритету применяется к небольшим порциям данных, как правило, к каждому байту, что дает коэффициент избыточности для этого метода 1/8. Метод редко применяется в вычислительных сетях из-за его большой избыточности и невысоких диагностических способностей.

Вертикальный и горизонтальный контроль по паритету представляет собой модификацию описанного выше метода. Его отличие состоит в том, что исходные данные рассматриваются в виде матрицы, строки которой составляют байты данных. Контрольный разряд подсчитывается отдельно для каждой строки и для каждого столбца матрицы.

Рис. 6.5 Метод вертикального и горизонтального контроля по паритету

 

Этот метод обнаруживает большую часть двойных ошибок, однако обладает еще большей избыточностью. На практике сейчас также почти не применяется.

 

Циклический избыточный контроль (Cyclic Redundancy Check, CRC) Этот метод является в настоящее время наиболее популярным методом контроля в вычислительных сетях (и не только в сетях, например, этот метод широко применяется при записи данных на диски и дискеты). Метод основан на рассмотрении исходных данных в виде одного многоразрядного двоичного числа. Например, кадр, состоящий из 1024 байт, будет рассматриваться как одно число, состоящее из 8192 бит. В качестве контрольной информации рассматривается остаток от деления этого числа на известный делитель R. Обычно в качестве делителя выбирается семнадцати- или тридцати трехразрядное число, чтобы остаток от деления имел длину 16 разрядов (2 байт) - CRC16, или 32 разряда (4 байт) - CRC32.

При получении кадра данных снова вычисляется остаток от деления на тот же делитель R, но при этом к данным кадра добавляется и содержащаяся в нем контрольная сумма. Если остаток от деления на R равен нулю, то делается вывод об отсутствии ошибок в полученном кадре, в противном случае кадр считается искаженным. Этот метод обладает более высокой вычислительной сложностью, но его диагностические возможности гораздо выше, чем у методов контроля по паритету. Метод CRC обнаруживает все одиночные ошибки, двойные ошибки и ошибки в нечетном числе бит. Метод обладает также невысокой степенью избыточности. Например, для кадра размером в 1024 байт контрольная информация длиной в 4 байт составляет только 0,4 %.

 

 

 

    1. Адресация пакетов.

Каждый абонент (узел) локальной сети должен иметь свой уникальный адрес (идентификатор, МАС-адрес), чтобы ему можно было адресовать пакеты.

Существуют две основные системы присвоения адресам абонентам:

1.При установке сети каждому  абоненту присваивается аппаратно (с помощью переключателей на  плате адаптера) или программно. При этом количество разрядов  адреса определяется как 2n>Nmax, где n -  количество разрядов адреса; Nmax – максимально возможное число абонентов сети (Например, n=8, если Nmax=255, один адрес используется для адресации пакетов всем абонентам сети – широковещательной передачи). Реализован в Arcnet. Достоинства: простота и малый объем служебной информации в пакете, а также простота аппаратуры адаптера, распознающей адрес пакета. Недостаток: трудоемкость задания адресов и возможность ошибки (например, двум абонентам сети может быть присвоен один и тот же адрес).

2. Разработан международной организацией IEEE, используется в большинстве сетей. Уникальный сетевой адрес присваивается каждому адаптеру сети еще на этапе его изготовления. Был выбран 48-битный формат адреса, что соответствует примерно 280 триллионам различных адресов. Чтобы распределить возможные диапазоны адресов между многочисленными изготовителями сетевых адаптеров, была предложена следующая структура адреса, которая представлена на рис 6.6

Рис. 6.6. Структура 48-битного стандартного адреса

Младшие 24 разряда кода адреса называются OUA (Organizationally Unique Address) - организационно уникальный адрес. Именно их присваивает производитель сетевого адаптера. Всего возможно свыше 1 б миллионов комбинаций.

Следующие 22 разряда кода называются OUI (Organizationally Unique Identifier) - организационно уникальный идентификатор. IEEE присваивает один или несколько OUI каждому производителю сетевых адаптеров. Это позволяет исключить совпадения адресов адаптеров от разных производителей. Всего возможно свыше 4 миллионов разных OUI. Вместе OUA и OUI называются UAA (Universally Administered Address) - универсально управляемый адрес или IEEE-адрес.

Два старших разряда адреса являются управляющими и определяют тип адреса, способ интерпретации остальных 46 разрядов.

Старший бит I/G (Individual/Group) определяет, индивидуальный это адрес или групповой. Если он установлен в 0, то мы имеем дело с индивидуальным адресом, если установлен в 1, то с групповым (многопунктовым или функциональным) адресом. Пакеты с групповым адресом получают все имеющие его сетевые адаптеры, причём групповой адрес определяется всеми 46 младшими разрядами.

Второй управляющий бит U/L (Universal/Local) называется флажком универсального/местного управления и определяет, как был присвоен адрес данному сетевому адаптеру. Обычно он установлен в 0. Установка бита U/L в 1 означает, что адрес задан не производителем сетевого адаптера, а организацией, использующей данную сеть. Это довольно редкая ситуация.

Для широковещательной передачи используется специально выделенный сетевой адрес, все 48 битов которого установлены в единицу. Его принимают все абоненты сети независимо от их индивидуальных и групповых адресов.

Данной системы адресов придерживаются, например, такие популярные сети, как Ethernet, Fast Ethernet, Token-Ring, FDDI, 100VG-AnyLAN.

Ее недостатки - высокая сложность аппаратуры сетевых адаптеров, а также большая доля служебной информации в передаваемом пакете (адрес источника и адрес приемника требуют уже 96 (48+48) битов пакета, или 12 байт).

Во многих сетевых адаптерах предусмотрен так называемый циркулярный режим. В этом режиме адаптер принимает все пакеты, приходящие к нему, независимо от значения поля адреса приемника. Этот режим используется, например, для проведения диагностики сети, измерения ее производительности, контроля за ошибками передачи. В этом случае один компьютер принимает и контролирует все пакеты, проходящие по сети, но сам ничего не передает. В этом же режиме работают сетевые адаптеры мостов и коммутаторы, которые должны обрабатывать перед ретрансляцией все приходящие к ним пакеты.

 

6.6 Методы управления обменом.

6.6.1 Классификация методов управления обменом.

Сеть всегда объединяет несколько абонентов, каждый из которых имеет право передавать свои пакеты. Но по одному кабелю не может одновременно передаваться два пакета, иначе возможен конфликт (коллизия), что приведет к искажению и потере обоих пакетов. Следует установить очередность доступа к сети (захвата сети) всеми абонентами, желающими передавать.

Поэтому в любой сети применяется тот или иной метод управления обменом (он же метод доступа, он же метод арбитража), разрешающий или предотвращающий конфликты между абонентами. От эффективности выбранного метода зависит очень многое: скорость обмена информацией между компьютерами, нагрузочная способность сети, время реакции сети на внешние события и т.д.

Метод управления - это один из важнейших параметров сети. Тип метода управления обменом во многом определяется особенностями топологии сети.

Методы управления обменом делятся на две группы:

- Централизованные методы, при которых все управление сосредоточенно в одном месте - центре. Недостатки таких методов: неустойчивость к отказам центра, малая гибкость управления. Достоинство - отсутствие конфликтов.

- Децентрализованные методы, при которых отсутствует центр управления.  Достоинства таких методов: высокая устойчивость к отказам и большая гибкость, а недостатки - возможны конфликты, которые надо разрешать.

Децентрализованные методы делятся на:

- Детерминированные методы, которые определяют четкие правила чередования захвата сети абонентами. Абоненты имеют различные приоритеты. При этом конфликты полностью исключены (или маловероятны), но некоторые абоненты могут дожидаться своей очереди слишком долго. К детерминированным методам относится, например, маркерный доступ, при котором право передачи передается по эстафете от абонента к абоненту.

Случайные методы, которые определяют случайное чередование передающих абонентов. В этом случае имеется возможность конфликтов, но предлагаются способы их разрешения. Случайные методы работают хуже, чем детерминированные, при больших информационных потоках в сети (при большом графике сети) и не гарантируют абоненту величину времени доступа (это интервал между возникновением желания передавать и получением возможности передать свой пакет). Пример случайного метода -  стандартный метод CSMA/CD (Carrier-Sense Multiple Access with Collision Detection) МНДК/ОК (множественный доступ с контролем несущей и обнаружением коллизий (столкновений)).

Рассмотрим три наиболее типичных метода управления обменом, характерных для трех основных топологий.

 

6.6.2 Управление обменом в сети типа «звезда».

Речь идет только об активной истинной звезде. Чаще всего центральный абонент может производить обмен только с одним периферийных абонентов. Поэтому в любой момент времени нужно выделить только одного абонента ведущего передачу. Здесь возможны два решения:

  1. Активный центр. Ц посылает запросы (управляющие пакеты) по очереди всем АП. АП, который хочет передавать (первый из опрошенных) посылает ответ и сразу же начинает передавать. После окончания сеанса Ц продолжает опрос по кругу. АП имеют географические приоритеты: максимальный приоритет у того, кто ближе к последнему абоненту, закончившему обмен. Ц передает без всякой очереди.
  2. Пассивный центр. Ц не опрашивает, а слушает всех АП по очереди (т.е. принимает пакеты только от одного из них.)  АП посылают запросы и ждут ответа. Когда центр принимает запрос, он отвечает запросившему АП (разрешает ему передачу).

Информация о работе Конспект лекций по дисциплине «Сетевые технологии»