Абсорбционная установка

Автор работы: Пользователь скрыл имя, 20 Июня 2013 в 09:53, курсовая работа

Краткое описание

Абсорбцией называется процесс избирательного поглощения компонентов из газовой или паровой смеси жидким поглотителем, в котором данный компонент растворим.
Различают физическую абсорбцию и хемосорбцию. При физической абсорбции растворение газа (пара) не сопровождается химической реакцией. Абсорбция протекает до тех пор, пока парциальное давление поглощаемого компонента в газовой (паровой) фазе остаётся выше равновесного давления над раствором. При хемосорбции (абсорбции, сопровождаемой химической реакцией) поглощаемый компонент вступает в необратимую химическую реакцию с поглотителем и образует химическое соединение.

Содержание

Введение
1. Физико-химические основы процесса
1.1 Устройство абсорбционных аппаратов
1.2 Технологическая схема установки
2. Технологический расчет
2.1 Построение линии равновесий и рабочей линии процесса
2.2 Материальный баланс
2.3 Тепловой баланс
3. Конструктивный расчёт
3.1 Расчет диаметра колонны
3.2 Расчет высоты колонны
3.3 Подбор стандартных конструктивных элементов
3.3.1 Подбор крышки и днища
3.3.2 Подбор тарелок
3.4 Расчет штуцеров
3.5 Расчет массы аппарата
3.6 Подбор опор
Заключение
Список использованной литературы

Прикрепленные файлы: 1 файл

абсорбционная установка.docx

— 142.29 Кб (Скачать документ)

 

1.1 Устройство  абсорбционных аппаратов

Абсорберы - аппараты, в которых  осуществляются абсорбционные процессы. Подобно другим процессам массопередачи, абсорбция протекает на поверхности раздела фаз. Поэтому абсорберы должны иметь развитую поверхность соприкосновения между жидкостью и газом. По способу образования этой поверхности абсорберы условно разделяются на следующие 4 группы:

поверхностные и пленочные;

насадочные;

барботажные (тарельчатые);

распыливающие.

Поверхностные абсорберы. Эти  абсорберы используют для поглощения хорошо растворимых газов. В указанных  аппаратах газ проходит над поверхностью неподвижной или медленно движущейся жидкости. Так как поверхность  соприкосновения в таких абсорберах мала, то устанавливают несколько последовательно соединенных аппаратов, в которых газ и жидкость движутся противотоком друг к другу. Для того, чтобы жидкость перемещалась по абсорберам самотеком, каждый последующий по ходу жидкости аппарат располагают несколько ниже предыдущего. Для отвода тепла, выделяющегося при абсорбции, в аппаратах устанавливают змеевики, охлаждаемые водой или другим охлаждающим агентом, либо помещают абсорберы в сосуды с проточной водой.

Пленочные абсорберы. Эти  аппараты более эффективны и компактны, чем поверхностные абсорберы. В  пленочных абсорберах поверхностью контакта фаз является поверхность  текущей пленки жидкости. Различают  следующие разновидности аппаратов  данного типа: трубчатые абсорберы, абсорберы с плоско - параллельной или листовой насадкой, абсорберы  с восходящим движением пленки жидкости.

Насадочные абсорберы. Одним  из наиболее распространенных абсорберов поверхностного типа является насадочный колонный аппарат. Он отличается простотой  устройства и пригодностью к работе с агрессивными средами. Его применение допустимо как в тех случаях, когда массообмен контролируется диффузионным сопротивлением жидкой фазы, так и тогда, когда решающим является сопротивление газовой фазы. Насадочные абсорберы представляют собой колонны, загруженные насадкой - твердыми телами различной формы; при наличии насадки увеличивается поверхность соприкосновения газа и жидкости. В насадочной колонне насадка укладывается на опорные решетки, имеющие отверстия или щели для прохождения газа и стока жидкости. Последняя с помощью распределителя равномерно орошает насадочные тела и стекает вниз. В насадочной колонне жидкость течет по элементу насадки в виде тонкой пленки, поэтому поверхностью контакта фаз является в основном смоченная поверхность насадки, и насадочные аппараты можно рассматривать как разновидность пленочных. Однако в последних пленочное течение жидкости происходит по всей высоте аппарата, а в насадочных абсорберах - только по высоте элемента насадки.

Барботажные (тарельчатые) абсорберы. Тарельчатые абсорберы представляют собой вертикальные колонны, внутри которых размещены горизонтальные перегородки - тарелки. С помощью тарелок осуществляется направленное движение фаз и многократное взаимодействие жидкости и газа. В барботажных абсорберах газ выходит из большого числа отверстий и барботируется через слой жидкости либо в виде отдельных пузырьков (при малых скоростях газа), либо в виде струй (при повышенных скоростях газа), переходящих все же в поток пузырьков на некотором расстоянии от точки истечения газа. В результате образуется газожидкостная (гетерогенная) система нижняя часть, которой состоит из слоя жидкости с распределенными в ней газовыми пузырьками, средняя - из слоя ячеистой пены, а верхняя - из зоны брызг, возникающих при разрыве оболочек уходящих газовых пузырей. Высоты этих слоев изменяются со скоростью газа; с ее возрастанием уменьшается нижний слой и увеличивается средний (в пределах зависящих от физических свойств жидкости).

Структуру газожидкостного  слоя можно охарактеризовать его  высотой, газосодержанием и размером газовых пузырьков. При истечении газа из одиночного затопленного отверстия с определенным диаметром, скорость которого ниже известного предела образуются одиночные свободно всплывающие пузырьки, диаметр которых, в рассматриваемом режиме, не зависит от расхода газа. Заметим, однако, что при интенсивном истечении газа образуются пузырьки различных размеров, которые при подъеме обычно деформируются, приобретая эллипсоидальную и полусферическую форму. Кроме того, газовые пузырьки имеют вертикальную траекторию движения (иногда даже спиральную).

Уровень жидкости при ее движении вдоль барботажной тарелки на пути от входа до перетока понижается на некоторую величину, вследствие гидравлического сопротивления. Это приводит к неравномерному распределению газового потока по сечению абсорбера; большие количества газа будут проходить там, где высота слоя жидкости меньше.

Площадь живого сечения переточного устройства (трубы, сегмента) определяется по объемному расходу жидкости и ее скорости, принимаемой во избежании захвата газа не выше 0,10 - 0,12 м/с.

Тарельчатые колонны удобны для крупнотоннажных производств при относительно малых расходах жидкости, недостаточных для равномерного смачивания насадки, а также для процессов, сопровождающихся колебаниями температуры, так как периодическое расширение и сжатие корпуса может разрушить хрупкую насадку. На тарелках проще установить змеевики для подвода и отвода теплоты. Тарельчатые колонны также применяются при обработке потоков с твердыми примесями или при выделении твердого осадка.

По способу слива жидкости с тарелок барботажные абсорберы можно подразделить на колонны с тарелками со сливными устройствами и без них.

Тарельчатые колонны со сливными устройствами. В этих колоннах перелив  жидкости с тарелки на тарелку  осуществляется при помощи специальных  устройств - сливных трубок, карманов и др. Нижние концы трубок погружены  в стакан на нижерасположенных тарелках и образуют гидравлические затворы, исключающие возможность прохождения  газа через сливное устройство.

К тарелкам со сливными устройствами относятся: ситчатые, колпачковые, клапанные, балластные и пластинчатые.

Гидродинамические режимы работы тарелок. В зависимости от скорости газа и плотности орошения различают  три основных гидродинамических  режима работы барботажных тарелок: пузырьковый, пенный, струйный, или инжекционный. Эти режимы отличаются структурой барботажного слоя, которая в основном определяет его гидравлическое сопротивление и высоту, а также поверхность контакта фаз.

Пузырьковый режим. Наблюдается  при небольших скоростях газа, когда он движется сквозь слой жидкости в виде отдельных пузырьков. Поверхность  контакта фаз на тарелке невелика.

Пенный режим. С увеличением  расхода газа выходящие из отверстия и прорези отдельные пузырьки сливаются в сплошную струю, которая на определенном расстоянии от места истечения разрушается вследствие сопротивления барботажного слоя с образованием большого количества пузырьков. При этом на тарелке возникает газожидкостная дисперсная система - пена, которая является нестабильной и разрушается сразу же после прекращения подачи газа. В указанном режиме контактирование газа и жидкости происходит на поверхности пузырьков и струй газа, а также на поверхности капель жидкости, которые в большом количестве образуются над барботажным слоем при выходе пузырьков газа из барботажного слоя и разрушении их оболочек.

Струйный (инжекционный) режим. При дальнейшем увеличении скорости газа длина газовых струй увеличивается, и они выходят на поверхность  барботажного слоя, не разрушаясь и образуя большое количество крупных брызг. Поверхность контакта фаз в условиях такого гидродинамического режима резко снижается.

Ситчатые тарелки. Газ проходит сквозь отверстия тарелки и распределяется в жидкости в виде мелких струек и пузырьков. Газ должен двигаться с определенной скоростью и иметь давление, достаточное для того, чтобы преодолеть давление слоя жидкости на тарелке и предотвратить стекание жидкости через отверстия тарелки. Ситчатые тарелки отличаются простотой устройства, легкостью монтажа, осмотра и ремонта. Гидравлическое сопротивление этих тарелок невелико. Ситчатые тарелки устойчиво работают в широком интервале скоростей газа, причем в определенном диапазоне нагрузок по газу и жидкости эти тарелки обладают высокой эффективностью. Вместе с тем ситчатые тарелки чувствительны к загрязнениям и осадкам, которые забивают отверстия тарелок. В случае внезапного прекращения поступления газа или значительного снижения его давления с ситчатых тарелок сливается вся жидкость, и для возобновления процесса требуется вновь запускать колонну. Разновидностью абсорберов с ситчатыми тарелками являются пенные абсорберы.

Колпачковые тарелки. Газ барботирует через жидкость, выходя из прорезей колпачков, расположенных на каждой тарелке. В прорезях газ дробится на мелкие струйки, которые на выходе из прорези почти сразу поднимаются вверх и, проходя через слои жидкости на тарелке, сливаются друг с другом (рисунок 1).

1 - тарелка; 2 - патрубки; 3 - колпачки; 4 - переливные трубы

Рисунок 1 - Колонна с колпачковыми тарелками

В колонне с колпачковыми тарелками находятся тарелки 1, с патрубками 2, закрытые сверху колпачками 3. Нижние края колпачков снабжены зубцами или прорезями в виде узких вертикальных щелей. Жидкость перетекает с тарелки на тарелку через переливные трубы 4. Уровень жидкости на тарелке соответствует высоте, на которую верхние концы переливных труб выступают над тарелкой. Чтобы жидкость перетекала только по переливным трубам, а не через патрубки 2, верхние концы патрубков должны быть выше уровня жидкости. Нижние края колпачков погружены в жидкость так, чтобы уровень жидкости был выше верха прорезей.

Газ проходит по патрубкам 2 в пространство под колпачками и  выходит через отверстие между  зубцами или через прорези  в колпачках, барботируется в слой жидкости.

Чтобы газ не попадал в  переливные трубы и не препятствовал, таким образом, нормальному перетоку жидкости с тарелки на тарелку, нижние концы переливных труб опущены под уровень жидкости. Благодаря этому создается гидрозатвор, предотвращающий прохождение газа через переливные трубы.

Колпачковые тарелки менее чувствительны к загрязнениям, чем колонны с ситчатыми тарелками, и отличаются более высоким интервалом устойчивой работы колонны с колпачковыми тарелками. Колпачковые тарелки устойчиво работают при значительных изменениях нагрузок по газу и жидкости. К их недостаткам следует отнести сложность устройства и высокую стоимость, низкие предельные нагрузки по газу, относительно высокое гидравлическое сопротивление, трудность очистки. Для нормальной работы колпачковых тарелок необходимо, чтобы все прорези в колпачках были открыты для равномерного прохода газа. Это условие достигается при скорости движения газа больше чем 0,6 м/с.

Клапанные тарелки. Принцип  действия состоит в том, что свободно лежащий над отверстием в тарелке  круглый клапан с изменением расхода  газа своим весом автоматически  регулирует величину площади зазора между клапаном и плоскостью тарелки  для прохода газа и тем самым  поддерживает постоянной скорость газа при его истечении в барботажный слой. При этом с увеличением скорости газа в колонне гидравлическое сопротивление клапанной тарелки увеличивается незначительно.

Балластные тарелки. Отличаются по устройству от клапанных тем, что  в них между легким круглым  клапаном и кронштейном-ограничителем  установлен на коротких стойках, опирающихся  на тарелку, более тяжелый, чем клапан, балласт. Клапан начинает подниматься  при небольших скоростях газа. С дальнейшим увеличением скорости газа клапан упирается в балласт  и затем поднимается вместе с  ним. Балластные тарелки отличаются более равномерной работой и  полным отсутствием провала жидкости во всем интервале скоростей газа.

Достоинства клапанных и  балластных тарелок: сравнительно высокая  пропускная способность по газу и  гидродинамическая устойчивость, постоянная и высокая эффективность в  широком интервале нагрузок по газу. Последнее достоинство является особенностью клапанных и балластных тарелок по сравнению с тарелками  других конструкций. К недостаткам  этих тарелок следует отнести  их повышенное гидравлическое сопротивление, обусловленное весом клапана  или балласта.

Пластинчатые тарелки. Эти  тарелки, в отличие от тарелок, рассмотренных  выше, работают при однонаправленном движении фаз, то есть каждая ступень  работает по принципу прямотока, что  позволяет резко повысить нагрузки по газу и жидкости, в то время  как колонна в целом работает с противотоком фаз. Достоинства  пластинчатых тарелок: низкое гидравлическое сопротивление, возможность работы с загрязненными жидкостями, низкий расход металла при их изготовлении. Недостатки: трудность отвода и подвода  тепла, снижение эффективности при  небольших расходах жидкости. 

 

1.2 Технологическая  схема установки

Газ, охлажденный в теплообменнике 9, подается газодувкой 8 в нижнюю часть абсорбера 6, где равномерно распределяется по сечению колонны и поступает на контактные элементы (тарелку). Абсорбент подается в верхнюю часть колонны центробежным насосом 4 из сборника 3. В колонне осуществляется противоточное взаимодействие газа и жидкости. Очищенный газ выходит из колонны в атмосферу. Абсорбент стекает через гидрозатвор в сборник 7, откуда насосом 5 отправляется на дальнейшую переработку. Для охлаждения газа в холодильник из градирни 2 подается насосом 1 вода, которая после холодильника возвращается на охлаждение в градирню.

Схема автоматизирована. Цель системы автоматического регулирования  определяется назначением процесса: очистка газа, поступающего в абсорбер или получение готового продукта. В данной работе рассматривается  первая задача, в соответствии с  которой основными регулируемыми  параметрами являются:

Информация о работе Абсорбционная установка