Автор работы: Пользователь скрыл имя, 20 Июня 2013 в 09:53, курсовая работа
Абсорбцией называется процесс избирательного поглощения компонентов из газовой или паровой смеси жидким поглотителем, в котором данный компонент растворим.
Различают физическую абсорбцию и хемосорбцию. При физической абсорбции растворение газа (пара) не сопровождается химической реакцией. Абсорбция протекает до тех пор, пока парциальное давление поглощаемого компонента в газовой (паровой) фазе остаётся выше равновесного давления над раствором. При хемосорбции (абсорбции, сопровождаемой химической реакцией) поглощаемый компонент вступает в необратимую химическую реакцию с поглотителем и образует химическое соединение.
Введение
1. Физико-химические основы процесса
1.1 Устройство абсорбционных аппаратов
1.2 Технологическая схема установки
2. Технологический расчет
2.1 Построение линии равновесий и рабочей линии процесса
2.2 Материальный баланс
2.3 Тепловой баланс
3. Конструктивный расчёт
3.1 Расчет диаметра колонны
3.2 Расчет высоты колонны
3.3 Подбор стандартных конструктивных элементов
3.3.1 Подбор крышки и днища
3.3.2 Подбор тарелок
3.4 Расчет штуцеров
3.5 Расчет массы аппарата
3.6 Подбор опор
Заключение
Список использованной литературы
СОДЕРЖАНИЕ
Введение
1. Физико-химические основы процесса
1.1 Устройство абсорбционных аппаратов
1.2 Технологическая схема установки
2. Технологический расчет
2.1 Построение линии равновесий и рабочей линии процесса
2.2 Материальный баланс
2.3 Тепловой баланс
3. Конструктивный расчёт
3.1 Расчет диаметра колонны
3.2 Расчет высоты колонны
3.3 Подбор стандартных конструктивных элементов
3.3.1 Подбор крышки и днища
3.3.2 Подбор тарелок
3.4 Расчет штуцеров
3.5 Расчет массы аппарата
3.6 Подбор опор
Заключение
Список использованной литературы
ВВЕДЕНИЕ
Абсорбцией называется процесс избирательного поглощения компонентов из газовой или паровой смеси жидким поглотителем, в котором данный компонент растворим.
Различают физическую абсорбцию и хемосорбцию. При физической абсорбции растворение газа (пара) не сопровождается химической реакцией. Абсорбция протекает до тех пор, пока парциальное давление поглощаемого компонента в газовой (паровой) фазе остаётся выше равновесного давления над раствором. При хемосорбции (абсорбции, сопровождаемой химической реакцией) поглощаемый компонент вступает в необратимую химическую реакцию с поглотителем и образует химическое соединение.
Физическая абсорбция обычно обратима. На этом свойстве абсорбционных процессов основано выделение поглощаемого газа из раствора - десорбция. Десорбцию газа проводят отгонкой его в токе инертного газа или водяного пара в условиях подогрева абсорбента или снижении давления над абсорбентом. Отработанные после хемосорбции абсорбенты обычно регенерируют химическими методами или нагреванием.
Сочетание абсорбции и
десорбции позволяет
Протекание абсорбционных процессов характеризуется их статикой и кинетикой. Статика абсорбции, т.е. равновесие между жидкой и газовой фазами, определяет состояние, которое устанавливается при весьма продолжительном соприкосновении фаз. Кинетика абсорбции определяется движущей силой процесса, т.е. степенью отклонения системы от состояния равновесия, свойствами поглотителя, компонента и инертного газа, а также способом соприкосновения фаз.
В промышленности абсорбцию
применяют для решения
1) для получения готового продукта (например, абсорбция в производстве серной кислоты, абсорбция с получением хлороводородной кислоты, абсорбция оксидов азота водой в производстве азотной кислоты и т.д.); при этом десорбцию проводить не обязательно;
2) для выделения ценных
компонентов из газовых смесей
(например, абсорбция бензола из
коксового газа, абсорбция ацетилена
из газов крекинга или
3) для очистки газовых выбросов от вредных примесей (например, очистка топочных газов от , очистка газов от фтористых соединений, выделяющихся при производстве минеральных удобрений и т.д.) Очистку газов от вредных примесей абсорбцией используют также при очистке технологических газов, когда присутствие примесей недопустимо для дальнейшей переработки газа (например, очистка коксового и нефтяного газов от , очистка азотоводородной смеси, используемую для синтеза аммиака от и и т.д.). В этих случаях извлекаемые из газовых смесей компоненты обычно используют, поэтому их выделяют десорбцией;
4) для осушки газов,
когда в абсорбционных
Аппараты, в которых проводят процессы абсорбции, называют абсорберами.
Для проведения процесса абсорбции
применяют абсорбционные
Абсорбционные аппараты классифицируются в зависимости от технологического назначения, давления и вида внутреннего устройства, обеспечивающего контакт газа (пара) и жидкости.
По технологическому назначению абсорбционные аппараты подразделяются на аппараты установок осушки, очистки газа, газораспределения и т.д.
В зависимости от внутреннего устройства различают тарельчатые, насадочные, распылительные, роторные (механические), поверхностные и каскадные абсорберы. Наиболее широко распространены тарельчатые и насадочные аппараты.
В зависимости от применяемого давления аппараты подразделяются на вакуумные, атмосферные и работающие под давлением выше атмосферного.
При выборе типа аппарата следует
учитывать технологические
Плёночные аппараты, к которым относятся также абсорберы с регулярной насадкой, незаменимы при проведении процесса в условиях разложения, поскольку их гидравлическое сопротивление самое низкое. Плёночные и насадочные колонны предпочтительнее также для обработки коррозионных сред и пенящихся жидкостей.
Тарельчатые колонны удобны
для крупнотоннажных
Тарельчатые абсорберы обычно
представляют собой вертикальные цилиндры
- колонны, внутри которых на определенном
расстоянии друг от друга по высоте
колонны размещаются
Таким образом, процесс массопереноса в тарельчатых колоннах осуществляется в основном в газожидкостных системах, создаваемых на тарелках, поэтому в таких аппаратах процесс проходит ступенчато, и тарельчатые колонны в отличие от насадочных, в которых массоперенос проходит непрерывно, относят к группе ступенчатых аппаратов. На каждой тарелке, в зависимости от ее конструкции, можно поддерживать тот или иной вид движения фаз, обычно перекрестный ток или полное перемешивание жидкости.
Насадочные абсорберы получили наибольшее применение в промышленности. Эти абсорберы представляют собой колонны, заполненные насадкой - твердыми телами различной формы. В насадочной колонне насадка укладывается на опорные решетки, имеющие отверстия или щели для прохождения газа и стока жидкости. Которая достаточно равномерно орошает насадку с помощью распределителя и стекает по поверхности насадочных тел в виде тонкой пленки вниз.
В распылительных абсорберах
контакт между фазами достигается
распыливанием или
1) форсуночные распыливающие абсорберы, в которых жидкость распыливается на капли форсунками;
2) скоростные прямоточные распыливающие абсорберы, в которых распыливание жидкости осуществляется за счет кинетической энергии газового потока;
3) механические распыливающие абсорберы, в которых жидкость распыляется вращающимися деталями.
В нефтяной и газовой промышленности процесс абсорбции применяется для разделения, осушки и очистки углеводородных газов. Из природных и попутных нефтяных газов путем абсорбции извлекают этан, пропан, бутан и компоненты бензина; абсорбцию применяют для очистки природных газов от кислых компонентов - сероводорода, используемого для производства серы, диоксида углерода, серооксида углерода, сероуглерода, тиолов (меркаптанов) и т.п.; с помощью абсорбции также разделяют газы пиролиза и каталитического крекинга и осуществляют санитарную очистку газов от вредных примесей.
В качестве абсорбентов при разделении углеводородных газов используют бензиновые или керосиновые фракции, а в последние годы и газовый конденсат, при осушке - диэтиленгликоль (ДЭГ) и триэтиленгликоль (ТЭГ). Для абсорбционной очистки газов от кислых компонентов применяют N-метил-2-пирролидон, гликоли, пропиленкарбонат, трибутилфосфат, метанол; в качестве химического поглотителя используются моно - и диэтаноламины.
В отличие от ректификации
процесс абсорбции протекает
в основном однонаправленно, т.е. абсорбент
можно считать практически
Абсорбция (десорбция) - диффузионный процесс, в котором участвуют две фазы: газовая и жидкая. Движущей силой процесса абсорбции (десорбции) является разность парциальных давлений поглощаемого компонента в газовой и жидкой фазах, который стремится перейти в ту фазу, где его концентрация меньше, чем это требуется по условию равновесия.
Обозначим парциальное давление поглощаемого компонента в газовой фазе через рг, а парциальное давление того же компонента в газовой фазе, находящейся в равновесии с абсорбентом, через рр. Если рг > рр, то компонент газа переходит в жидкость, т.е. протекает процесс абсорбции (рис. VI-1, а). Если рг < рр, то поглощенные компоненты газа переходят из абсорбента в газовую фазу, т.е. осуществляется процесс десорбции.
Чем больше величина рг - рр, тем интенсивнее осуществляется переход компонента из газовой фазы в жидкую. При приближении системы к состоянию равновесия движущая сила уменьшается, и скорость перехода компонента из газовой фазы в жидкую замедляется.
Поскольку парциальное давление компонента пропорционально его концентрации, то движущая сила процесса абсорбции или десорбции может быть выражена также через разность концентраций компонента в газовой Dу = y - ур или жидкой фазе Dх = хр - х.
Количество вещества М, поглощаемого
в единицу времени при
1. Физико-химические основы процесса
В процессе абсорбции содержание газа в растворе зависит от свойств газа и жидкости, температуры, давления и состава газовой фазы.
В результате растворения в жидкости бинарной газовой смеси (распределяемый компонент А, носитель В) взаимодействуют две фазы (Ф = 2), число компонентов равно трем (К = 3) и, согласно правилу фаз, число степеней свободы системы равно трем.
В системе газ - жидкость переменными являются температура, давление и концентрации в обеих фазах. Таким образом, в состоянии равновесия при постоянных значениях температуры и общего давления зависимость между парциальным давлением газа (или его концентрацией) и составом жидкой фазы однозначна. Данная зависимость выражается через закон Генри, согласно которому парциальное давление растворенного газа пропорционально его мольной доле в растворе или растворимость газа (поглощаемого компонента) в жидкости при данной температуре пропорциональна его парциальному давлению над жидкостью:
Значения коэффициента Генри для данного газа зависят от природы поглотителя и газа и от температуры, но не зависят от общего давления в системе.
Для идеальных растворов
на диаграмме зависимость
Когда в равновесии с жидкостью находится смесь газов, закону Генри может следовать каждый из компонентов смеси в отдельности.
Закон Генри применим к растворам газов, критические температуры которых выше температуры раствора, и справедлив только для идеальных растворов. Поэтому он с достаточной точностью применим лишь к сильно разбавленным реальным растворам, приближающимся по свойствам к идеальным, то есть соблюдается при малых концентрациях растворенного газа или при его малой растворимости. Для хорошо растворимых газов, при больших концентрациях их в растворе, растворимость меньше, чем следует из закона Генри. Для систем, не подчиняющихся этому закону, линия равновесия представляет собой кривую, которую строят обычно по опытным данным.