Современные химические источники тока

Автор работы: Пользователь скрыл имя, 23 Ноября 2013 в 16:44, реферат

Краткое описание

ХИТ – это устройство, в котором химическая энергия НЕПОСРЕДСТВЕННО превращается в электрическую энергию. Устройство для этого преобразования и будет называться «химическим источником тока» или «гальваническим элементом» или «электрохимическим элементом» или «электрохимической ячейкой». Все другие устройства предполагают ОПОСРЕДОВАННОЕ превращение химической энергии в электрическую энергию. Например, топливо сжигается, его химическая энергия превращается в тепло, за счет которого вода превращается в водяной пар, поток пара вращает турбину, которая генерирует электроэнергию.

Содержание

Введение (3)
Краткая теория химических источников тока (4)
Коммутация ХИТ (10)
Общие требования к химическим источникам тока (11)
Направления развития электрохимических систем (11)
Источники тока с цинковым анодом (12)
6.1 Марганцево-цинковые элементы (12)
6.2 Система Zn | NH4Cl, ZnCl2 | MnO2 (элемент Лекланше) (13)
6.3 Система Zn | KOH | MnO2 (15)
6.4 Система Zn | NaOH | CuO (16)
6.5 Система Zn | KOH | HgO (17)
6.6 Система Zn | KOH | AgO (Ag2O) (18)
Система Pb | H2SO4 | PbO2 (свинцовый аккумулятор) (20)
Никель-кадмиевые и никель-железные аккумуляторы Cd | KOH | NiOOH и Fe | KOH | NiOOH (22)
Никель-металлгидридный аккумулятор MH | KOH | NiOOH (24)
Первичные литиевые источники тока (27)
10.1 Система литий-вода (27)
10.2 Растворители и соли для литиевых источников тока (28)
10.3 Причины устойчивости литиевого электрода (30)
10.4 Система Li│LiBr│SO2 (31)
10.5 Система Li│LiAlCl4│SOCl2 (32)
Литиевые системы с твердым катодом (33)
11.1 Система Li│MnO2 (33)
11.2 Система Li│CuO (34)
11.3 Система Li│LiJ│J2 (35)
Литиевые аккумуляторы (36)
Марганцево-цинковые перезаряжаемые ХИТ (39)
Топливные элементы (41)
Электрохимические конденсаторы (43)
ХИТ для электромобиля (45)
Вывод (47)
Список используемой литературы

Прикрепленные файлы: 1 файл

современ ист ток.doc

— 1.46 Мб (Скачать документ)

Теоретически источники тока можно  построить на основе любой окислительно-восстановительной  реакции. На практике набор требований ограничивает круг используемых веществ. В итоге всего исследовано более 500 электрохимических систем, перспективных для возможного применения в ХИТ, и только 40 – 50 из них дошли до стадии практической реализации. Наиболее известные ХИТ созданы на основе электрохимических систем Pb-H2SO4-PbO2 (свинцовый кислотный аккумулятор), Cd-KOH -NiOOH (никель-кадмиевый щелочной аккумулятор), Fe-KOH-NiOOH (никель-железный щелочной аккумулятор), уже упоминавшихся Zn-H2O-MnO2, Zn-H2O-Ag2O, Zn-H2O-HgO и некоторых других. Это так называемые традиционные источники тока с водным электролитом, широко применяемые до настоящего времени. Вместе с тем, если учесть требования высокого напряжения и высоких удельных характеристик, то необходимо выбирать окислитель с как можно более положительным электродным потенциалом, а восстановитель – с как можно более отрицательным. Наиболее отрицательные значения потенциалов имеют щелочные и щелочноземельные металлы. Примеры даны в этой таблице вместе с теоретическими величинами удельной энергии и относительной ценой

 

Реакция ионизации

Е0, В

Qуд.теор. А×ч/кг

Относит. цена за 1 А×ч

1

Li – e = Li+

-3.04

3850

20

2

Mg – 2e = Mg2+

-2.37

2100

1

3

Al – 3e = Al3+

-1.66

2980

0.5

4

Cd – 2e + 2OH- = Cd(OH)2

-0.81

440

20

5

Zn – 2e = Zn2+

-0.76

830

1

6

Pb + SO42- – 2e = PbSO4

-0.36

260

2


 

Однако применение восстановителей, потенциалы которых отрицательнее  потенциала водородного электрода, осложняется протеканием в водных растворах реакции вытеснения водорода из воды, например,

 

Mg + 2H2O = Mg(OH)2 + H2­

 

Часть восстановителя тратится бесполезно на протекание этой побочной реакции. Взаимодействие метала и воды обычно протекает не напрямую, а по электрохимическому механизму, т.е. с разделением анодной и катодной полуреакций

 

Mg + 2OH- - 2e = Mg(OH)2¯

 

2H+ + 2e = H2­

 

в результате чего на электроде устанавливается  смешанный потенциал, лежащий между  потенциалами окисления восстановителя и катодного выделения водорода, что приводит к снижению НРЦ по сравнению с ЭДС.

Для свинца, кадмия и цинка, электродные потенциалы которых ненамного отрицательнее потенциала выделения водорода, скорость взаимодействия с водой невелика. Но для сильно электроотрицательных восстановителей, таких как щелочные металлы, щелочноземельные металлы и алюминий, скорость взаимодействия с водой может быть очень большой. Несмотря на все эти проблемы, работы по созданию ХИТ со всевозможными электроотрицательными восстановителями велись на протяжении всего XX века и продолжаются до сих пор. Ведутся разработки по созданию ХИТ с анодом из K, Na, Mg, Ca, Al. Однако до серийного многомиллионного коммерческого выпуска пока дошли только литиевые ХИТ.

 

6. Источники тока с цинковым анодом.

Цинк – очень удобный реагент  для ХИТ: он является хорошим восстановителем с достаточно отрицательным потенциалом, коррозионно довольно устойчив в водных растворах, сравнительно дешев и нетоксичен. Теоретическая удельная емкость цинка составляет 830 А×ч/кг – это большая величина, больше только у легких щелочных и щелочноземельных металлов и алюминия. Цинковые аноды использовались еще в Вольтовом столбе и продолжают оставаться основными до сих пор.

 

6.1 Марганцево-цинковые элементы

Ежегодно в мире их производят более 10 млрд. штук. По некоторым сведениям, 90% всех выпускаемых в мире ХИТ – это система Zn-MnO2. Их широкое распространение связано с удачным сочетанием качеств: 1) относительная дешевизна; 2) удобство в эксплуатации; 3) приемлемая сохраняемость; 4) приемлемые электрические характеристики. Недостаток – падение рабочего напряжения по отношению к НРЦ, что связано с природой MnO2-катода и проявляется во всех системах, содержащих MnO2. Выше мы уже рассматривали токообразующую реакцию этой системы:

 

Zn + 2MnO2 + 2H2O = 2MnOOH + Zn(OH)2

 

Механизм электрохимического восстановления MnO2 сложен, поэтому данная токообразующая реакция не единственная, её следует рассматривать лишь как первое приближение. Для нее Е ≈ 1.7 В, фактически НРЦ ≈ 1.55 – 1.85 В.

Для одноэлектронного восстановления MnO2 теоретическая удельная емкость 308 А×ч/кг. Существует несколько модификаций MnO2: a, b, g, d, e, h, l. В элементах Zn-MnO2 используются пиролюзит (природная руда, b-MnO2), гамма-активированный пиролюзит (ГАП, g-MnO2), электролитический диоксид марганца (ЭДМ, g-MnO2, полученный электролизом раствора MnSO4) и химический диоксид марганца (ХДМ, h-MnO2, полученный разложением KMnO4). Качество материала возрастает в этом ряду.

 

6.2 Система Zn ½ NH4Cl, ZnCl2 ½ MnO2 (элемент Лекланше)

Элементы Лекланше (солевые батарейки) являются основным типом первичных ХИТ уже более 100 лет. Очень долго они были самыми распространенными, но с 1998 года их производство начало сокращаться. Ряд стран (например, США) полностью перешли на выпуск щелочных элементов Zn-MnO2, т.к. солевым элементам присущи серьезные недостатки: 1) резкое снижение напряжения при разряде, что приводит к почти линейно падающей разрядной характеристике; 2) резкое ухудшение параметров при отрицательной температуре и при увеличении токовой нагрузки; 3) не выдерживают импульсных режимов разряда.

 

Конструкция. Конструктивно Zn-MnO2 чаще всего выпускаются в двух вариантах: «цилиндрическом» и «дисковом» (называемом также монетной или пуговичной конструкцией). Здесь показан разрез цилиндрического набивного элемента:

 

1 – отрицательный электрод (Zn)

2 – положительный электрод – брикет из спрессованной активной массы (MnO2 + углерод), увлажненный электролитом (NH4Cl + ZnCl2 + H2O + загуститель (крахмал)), в центре которого расположен токоотвод

3 – угольный стержень

4 – бумажный сепаратор с электролитной  пастой

5 – газовая камера для сбора  газов, выделяющихся при разряде  и саморазряде

6 – изоляционная прокладка 

7 – полимерный или картонный футляр


 

Снаружи находится пластиковый  или картонный футляр, или  же дополнительный стальной корпус. Почти всё внутреннее пространство занято катодом, тем не менее, данная конструкция является катодноограниченной, т.к. здесь Zn – конструкционный материал, взятый в избытке, анод не расходуется полностью.

В дисковых элементах со стальным корпусом (см. рисунок) цинк не является конструкционным материалом и его требуется в 2 – 3 раза меньше.

 

 

Обозначение типоразмеров цилиндрических ХИТ

 

Æ, мм

Высота, мм

Объем, см3

МЭК*

США

Россия

10.5

3

 

R08

O

 

10.5

44.5

 

R03

AAA

 

14.5

50.5

8.34

R6

AA

316

26.2

50

 

R14

C

343

34.2

61.5

56.5

R20

D

373


*МЭК – международная электротехническая  комиссия.

 

Для цилиндрических и дисковых (пуговичных) элементов используется также система обозначений из 4 или 5 цифр, например: типоразмер 1225 означает Æ 12 мм, h = 2.5 мм, типоразмер 18650 = Æ 18 мм, h = 65.0 мм.

 

Характеристики Zn - MnO2 элементов. Для Zn - MnO2 элементов характерна сильная зависимость разрядной емкости от тока. Поэтому понятиями «номинальная емкость» и «номинальный ток» пользуются редко.

 

Разрядные кривые элемента 373 при комнатной температуре (V = 56.5 см3, W = 5.6 – 7.3 Вт×ч, Q = 3.8 – 4.9 А×ч).

 

Элемент 316 с объемом 8.34 см3 должен иметь энергию примерно 0.8 – 1 Вт×ч, емкость 0.5 – 0.7 А×ч. Удельная энергия системы Zn-MnO2 составляет 50 – 85 Вт×ч/кг или 100 – 165 Вт×ч/л. Это невысокие показатели. Тем не менее, относительная дешевизна элемента – это его основное преимущество.

Температурный предел работоспособности  элементов Лекланше около –200С (ниже не работают). Сохранность заряда (емкости) – от нескольких месяцев до 1 – 3 лет. Сохранность сильно зависит от температуры хранения (2 – 3 месяца при 450С приравниваются к 1 году при 250С). При –200С могут храниться годами без существенного снижения показателей.

 

Разрядные характеристики элемента 373 при различных температурах (I = 10 мА).

 

 

6.3 Система Zn ½ KOH ½ MnO2

В других электрохимических системах с Zn анодом используется щелочной электролит. Это, как правило, концентрированный раствор КОН (25 – 40 масс. % КОН или 6 – 10 моль/л). Реже – 25% раствор NaOH (6 моль/л). В ХИТ всегда применяются высококонцентрированные или насыщенные растворы. Причины: 1) исходя из общих химических принципов, скорость процессов растет с ростом концентрации; 2) более прозаическая – расширение температурного диапазона в сторону низких температур требует незамерзающего электролита, поэтому лучше использовать эвтектические смеси. Для системы КОН – Н2О эвтектика приходится на 31 масс.% КОН (см. рисунок) и имеет tзам. = –670С. Максимум электропроводности приходится на 25 – 35 масс.% КОН в зависимости от температуры.

 

 

Сейчас Zn - MnO2 элементы всё больше выпускаются со щелочным электролитом (паста 30% КОН + загуститель). Их удельные характеристики ~ в 1.5 раза выше (80 – 125 Вт×ч/кг и 180 – 330 Вт×ч/л), чем солевых. Другие преимущества щелочных элементов: нет такого сильного падения емкости с током разряда и с температурой. В результате они могут быть лучше в 5 раз при разряде повышенным током. Сохранность заряда также лучше, чем у элементов Лакланше. Кроме того, щелочные элементы допускают повторный заряд после неглубокого разряда (не более 1/4 номинальной емкости).

При их изготовлении используется другая технология и более качественные и дорогие материалы, поэтому  они дороже. На корпусе изделия указано, как правило, щелочная или солевая система используется.

Реакция анодного растворения цинка в щелочном растворе связана с расходом щелочи, которая не компенсируется в катодном процессе на другом электроде.

Zn + 4OH- = ZnO22- + 2H2O + 2e

 

2MnO2 + 2H2O + 2e = 2MnOOH + 2OH-

После насыщения раствора цинкатом, идет вторичный процесс с образованием нерастворимого гидроксида или оксида

 

Zn + 2OH- = Zn(OH)2¯ + 2e (или ZnO¯ + H2O + 2e)

В этом случае в суммарном процессе щелочь уже не расходуется.


 

Существует также воздушно-цинковые элементы Zn½ NaOH ½O2 (на углеродном электроде с нанесенным катализатором восстановления кислорода) с ЭДС » 1.4 В (например, элемент «Крона») и суммарным токообразующим процессом

 

Zn + NaOH + 1/2O2 = NaHZnO2

 

или

 

Zn + 2NaOH + 1/2O2 = Na2ZnO2 + H2O

 

 

6.4 Система Zn ½ NaOH ½ CuO

Выпускаются уже более 100 лет. Токообразующая реакция в медно-цинковых элементах имеет вид

 

Zn + CuO + 2NaOH = Na2ZnO2 + Cu + H2O

 

с ЭДС = 1.058 В. Оксид меди восстанавливается до металлической меди, причем механизм реакции довольно сложен и протекает через стадию образования оксида одновалентной меди CuO ® Cu2O ® Cu.

Фактически НРЦ = 0.9 – 1.0 В. Удельная энергия очень мала: всего 35 – 40 Вт×ч/л или 25 – 30 Вт×ч/кг. Медно-цинковые элементы выпускаются в виде элементов большой емкости (до 1000 А×ч) для систем железнодорожной сигнализации, связи и т.д. Имеют баночную конструкцию: электроды погружены в большой объем щелочи.

Разрядное напряжение составляет 0.6 – 0.7 В. Предназначены для длительных разрядов малым током (до 3 мА/см2). Несмотря на низкое напряжение разряда и низкие удельные показатели, Zn|CuO-элементы используются в больших количествах в технике и на транспорте благодаря своей безотказности при длительной работе, стабильности напряжения и дешевизне. Саморазряд их ничтожен и они могут работать 10 – 15 лет при температурах до –100С.

Информация о работе Современные химические источники тока