Пропилен

Автор работы: Пользователь скрыл имя, 21 Сентября 2013 в 17:35, реферат

Краткое описание

Пропилен наряду с этиленом и бутиленом относится к числу важнейших видов сырья современной нефтехимической промышленности.
Разнообразие синтезов на основе пропилена является причиной быстрого увеличения объема производства этого продукта. Это наглядно иллюстрируется приведенными ниже данными (табл. 1) по планируемому производству пропилена в США , стране с самой мощной нефтехимической промышленностью.
Значительное расширение производства пропилена намечается и в других промышленно развитых странах.

Прикрепленные файлы: 1 файл

Polipropilen.doc

— 3.40 Мб (Скачать документ)

Стабилизаторы полипропилена 

Согласно опубликованным патентам и литературным данным, в качестве стабилизаторов .полипропилена могут быть рекомендованы следующие вещества.

Термоокислительные  стабилизаторы 

Замещенные  фенолы:

монофенолы

R, R', R" — алкилы;

алкилиден-бис-алкилфенолы

R, R'—H или алкилы; R’’—алкилы; n = 0 - 2;

трифенолы и полифенолы ;

аминофенолы .

Замещенные  оксихроманы

R — алкилы.

Ароматические амины

R, R'—фенил, циклогексил, нафтил, алкил,

Серусодержащие  соединения алкилзамещенные диоксидифенилсульфиды

 

R — алкилы; n = 0 - 2;

алкилзамещенные диаминодифенилсульфиды

R—алкилы; n = 0 - 2;

диалкилсульфиды

сложные эфиры b , b -дитиодипропионовой кислоты

R — алкил, арил, циклогексил;

вещества общей формулы

R, R'—алкил; R"- H, фенил, замещенный фенил, циклогексил;

производные трициана ;

сера, селен, теллур .

Соединения  трехвалентного фосфора

R—алкил, замещенный арил ;

R—алкил, замещенный арил; n = 0 - 2.

 

ПРИМЕНЕНИЕ  ПОЛИПРОПИЛЕНА

Полипропилен  как констукционный материал

Производится очень  много сортов полипропилена с разнообразными свойствами . Практически не существует полипропилена общего назначения, который бы с одинаковым успехом использовался, например, как для производства волокна, так и для изготовления деталей машин или пленки. Успешное применение полипропилена для той или иной цели предполагает правильный выбор композиции (сорта, марки материала), которая по своим свойствам наиболее соответствует условиям переработки, назначению изделия и основным требованиям к его конструкции . При применении металлов для конструкционных целей соблюдение принципа подбора считается вполне естественным, при работе же с пластмассами этот принцип пока еще недостаточно прочно вошел в практику. Именно из-за незнания взаимосвязи областей применения и свойств пластических масс было допущено немало ошибок при внедрении их в технику.

Тара и упаковка

Полипропилен, в особенности  пленка из него, обладает всеми необходимыми свойствами для применения в этой области. По своим характеристикам полипропиленовая пленка близка к полиэтиленовой, причем по некоторым показателям превосходит ее. По сравнению с пленками из других термопластов полипропиленовая пленка имеет преимущество в отношении стойкости к нагреванию и действию химических реагентов (она может быть подвергнута стерилизации при температуре выше 100° С, что определяет целесообразность ее использования в пищевой и фармацевтическом промышленности). Ее достоинствами являются также превосходили гибкость, глянцевитость поверхности, прозрачность, незначительная паропронинаемость, нетоксичность, сравнительно легкая свариваемость и хорошая сопротивляемость усталостной коррозии.

Несколько лет назад начали получать полипропиленовые пленки, ориентированные  в одном или двух взаимно перпендикулярных направлениях . Ориентация пленки улучшает ее прочность, жесткость, влагоизоляционные свойства и прозрачность. Прочность пленки, ориентированной в двух направлениях, в 4—8 раз превышает прочность неориентированной. По свариваемости ориентированная пленка уступает неориентированной, поэтому главным потребителем ее как упаковочного материала следует считать галантерею, где она ценна благодаря своей исключительной прозрачности, отсутствию морщинистости - в этом отношении она лучше полиамидной пленки.

Вполне оправдало себя применение полипропилепа для изготовления затворов (пробок), бутылей , контейнеров. Как указывается в литературе , полипропилен может успешно конкурировать с традиционными материалами в отношении экономичности изготовления этих изделий (полипропилен способен формоваться при исключительно коротких циклах). По прочности, ударостойкости и химической стойкости полипропилен превосходит полистирол, а по жесткости, сопротивлению истиранию и внешнему блеску - полиэтилен.

Волокно

Большое количество изотактического  полипропилена расходуется на производство волокна. Характерной особенностью полипропиленового волокна является его малая по сравнению с другими видами синтетических волокон плотность (0,905). Из 1 кг полипропилена можно получить 240000 м моноволокна диаметром 0,075 мм , т. е. больше, чем из любого другого синтетического материала, применяемого для производства моноволокон. Малая плотность полипропиленового моноволокна сочетается с исключительной прочностью и высокими эластическими свойствами. В то же время полипропиленовое волокно имеет меньший крип при постоянной нагрузке, более устойчиво к выцветанию и способно выдерживать без изменений воздействие более высоких температур (на 30° С), чем полиэтиленовое. Однако до сих пор не решена проблема стабилизации полипропиленового волокна от ультрафиолетового излучения. Это ограничивает возможность его использования в текстильной промышленности. Серьезными недостатками этого волокна являются также пониженная гигроскопичность (при использовании его для изготовления бельевых тканей), относительно плохая поверхностная окрашиваемость (поэтому нередко практикуется нерациональный метод окрашивания в массе) и не вполне удовлетворительная морозостойкость (20° С для ориентированного волокна).

С целью устранения этих недостатков  полипропилен можно модифицировать разными методами, в частности введением в него специальных добавок (например, веществ с хорошими гидрофильными свойствами или содержащих реакционноспособные группы, необходимые для крашения, ультрафиолетовых стабилизаторов, морозостойких добавок и т. п.) , Хотя проблемы модификации полипропилена разрешены еще далеко не полностью, некоторые зарубежные фирмы производят в опытных количествах надлежащим образом стабилизированные и окрашенные волокна, способные выдержать длительную эксплуатацию в условиях воздействия солнечных лучей (под открытым небом). Бесспорно, что решение указанных проблем принципиально возможно и является лишь делом времени.

Полипропилен  как антикоррозионный материал

Одно из типичных применений полипропилена — плакировка резервуаров, предназначенных для транспоровки и хранения химически агрессивных жидкостей, в том числе различных продовольственных товаров .

Были предприняты попытки изготовления полипропиленовых слоистых стеклопластиков различными методами. Основную трудность при этом представляет недостаточная адгезия полипропилена к стеклу

Кроме того, из полипропилена  изготовляют корпуса насосов, работающих в агрессивных средах, шестерни, колпаки, трубопроводы и арматуру. Там, где требуется ударостойкость при высоких рабочих температурах, полипропилен может конкурировать с поливинилхлоридом.

Применение  в машиностроении

Низкий коэффициент  трения и высокая износоустойчивость полипропилена позволяют использовать этот перспективный материал для конструкционных и других целей в машиностроительной промышленности, в том числе и там, где химическая стойкость имеет второстепенное значение. Из полипропилена изготовляют, в частности, детали текстильного оборудования (бобины, сепараторы, веретена), вентиляторов, пылесосов, полотеров, холодильников, колпаки п винты машин для стрижки газонов и т. д. . Применение его для этих целей вполне обоснованно: вентиляторы с полипропиленовыми деталями создают меньше шума и более стойки к вибрации, чем металлические, к тому же они более безопасны при случайном попадании пальцев между лопастями, что особенно важно в случае настольных вентиляторов.

В автомобильной промышленности полипропилен пока не получил широкого применения. Это объясняется, в частности, тем, что рабочие части автомобилей проходят длительные испытания на прочность и надежность. Тем не менее европейские автомобилестроители в настоящее время уже изготовляют из полипропилена амортизаторы, приборные щитки, распределительные коробки, штепсельные соединения, блоки предохранителей, рефлекторы, клаксоны, трубопроводы установки для кондиционирования воздуха, педали подачи топлива (сформованные в виде одного целого), оконные детали, дверные прокладки, а также сидения, заполненные полиуретановым пенопластом . Рабочие части, непосредственно контактирующие с керосином или бензином (например, насосы и карбюраторы), целесообразнее изготовлять из полиамида, так как бензин и керосин размягчают полипропилен.

Корпуса насосов для  щелока до последнего времени делали из полиэтилена высокого или низкого давления или металла. Металлические детали непригодны для этой цели ввиду химической агрессивности моющих средств, а полиэтиленовые подвержены усталостной коррозии.

К полипропилену был  проявлен большой интерес как  к материалу для изготовления деталей посудомоечных полуавтоматов, где он ценен благодаря химической стойкости, высокой износоустойчивости и ударопрочности.

Применение  в электротехнике

В электротехнической промышленности находят применение формованные  детали из полппропилена (например, катушки, обоймы, футляры, ламповые патроны, подставки, детали выключателей и телефонных аппаратов, корпуса радиоприемников, репродукторов, телевизоров и т. п.) , а также изоляционные оболочки и пленка, главным образом в виде ленты.

В качестве материала для изоляции электрических проводов и кабелей полипропилен пока еще не получил широкого признания, несмотря на то, что обладает высокими диэлектрическими свойствами и малой проницаемостью для паров воды. По всей вероятности, это связано с тем, что полипропилсн, как каждый новый изоляционный материал, сначала должен выдержать длительный испытательный срок.

Полипропилен пробовали  применять для изоляции электропроводов легкого типа, находящихся под напряжением 220 В. Поскольку для этой цели в настоящее время с успехом применяются другие изоляционные материалы, в частности поливинилхлорид, их замена полипропиленом была бы оправданной только в том случае, если бы он имел явное преимущество перед ними. Внедрение полипропилена означало бы уменьшение веса электроизоляции, а также повышение ее теплостойкости и, как следствие, возможность увеличения допустимой нагрузки в цепи и экономии изоляционного материала. Однако недостаточная гибкость полипропилена в относительно толстом слое ограничивает его применимость для электротехнической изоляции. При снижении толщины полипропиленового покрытия оно приобретает нужную гибкость, но при этом возрастает опасность механического повреждения его.

В высокочастотной технике  применение полипропилена затруднено тем, что в нем обычно содержатся остатки катализатора. Существующие технологические методы не обеспечивают достижения требуемой степени чистоты полимера. Правда, для большинства применений незначительное увеличение тангенса угла диэлектрических потерь не является помехой.

В последние годы в  технике нашли распространение  коммуникационные провода с пеноизоляцией. Полипропиленовый пенопласт может конкурировать в этой области с полиэтиленовым, так как обладает более низкой диэлектрической проницаемостью и лучшими физическими свойствами.

Полипропиленовая пленка в виде ленты широко применяется  для различных электротехнических целей. Этому способствуют высокая электрическая прочность тонких пленок, теплостойкость и способность к намотке.

 

 

Применение  в медецине

Долговременная устойчивость при температурах выше 100° С позволяет использовать полипропилен для изготовления корпусов ингаляторов, которые не подвержены коррозии под действием минеральных вод, применяемых для ингаляции, а также специальных трубок и шлангов.

В медицинской практике уже давно ощущалась потребность  в недорогих шприцах разового пользования . Такие шприцы очень удобны на случай дорожных аварий, стихийных бедствий и как обязательная принадлежность военных полевых аптечек. Во всех этих случаях они имеют преимущество по сравнению со стеклянными шприцами, которые тяжелее и гораздо дороже их. Этим и продиктована необходимость замены стекла более легкими и дешевыми материалами, в частности пластмассами. Если учесть, что в данном случае первостепенное значение приобретают физиологическая безвредность и возможность горячей стерилизации (или химической при комнатной температуре), то станет ясно, что для применения в этой области пригодны лишь немногие из современных синтетических материалов, среди которых полипропилен занимает достойное место. Следует заметить, что раньше для этих целей применяли полиэтилен и полистирол.

Пластмассовые шприцы вместе с лекарственным раствором и  инъекционной иглой упаковывают  в полипропиленовую или полиэтиленовую пленку. При горячей стерилизации полиэтиленовая пленка деформируется, поэтому ее стерилизуют окисью этилена или ионизирующим излучением.

Шприцы из полипропилена превосходны  по качеству (которое не ухудшается при многократной стерилизации при температуре до 130° С), не бьются и доступны по цене, вследствие чего за рубежом предполагают заменить ими стеклянные шприцы, применяемые обычно медицинской практике. Немаловажно и то, что технология изготовления полипропиленовых шприцев проще, чем стеклянных.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Содержание

I. Полипропилен

   1. Получение

   2. Выделение и очистка 

   3. Анализ 

   4. Свойства

II. Полимеризация пропилена

    1. Стереоспецифическая  полимеризация

      а) Катализаторы  стереоспецифической полимеризации

      б) Влияние условий проведения реакции на процесс полимеризации

      в) Регулирование  свойств продукта 

    2. Схема производства  полипропилена фирмы Монтекатини

    3. Сополимеризация  пропилена

      а) Сополимеризация  пропилена с этиленом

III. Структура полипропилена

    1. Стереоизомерия 

IV. Свойства полипропилена 

    1. Взаимосвязь структуры  и свойств

    2. Механические свойства . Диаграмма растяжения .

    3. Диэликтрические свойства .

    4. Поверхостные свойства .

    5. Оптические свойства .

    6. Химическая стойкость 

    7. Токсикологические свойства .

Информация о работе Пропилен