Автор работы: Пользователь скрыл имя, 21 Сентября 2013 в 17:35, реферат
Пропилен наряду с этиленом и бутиленом относится к числу важнейших видов сырья современной нефтехимической промышленности.
Разнообразие синтезов на основе пропилена является причиной быстрого увеличения объема производства этого продукта. Это наглядно иллюстрируется приведенными ниже данными (табл. 1) по планируемому производству пропилена в США , стране с самой мощной нефтехимической промышленностью.
Значительное расширение производства пропилена намечается и в других промышленно развитых странах.
Вулканизация
хлорсульфонированного
Вулканизация
1. Хлорсульфогруппы реагируют с окислами металлов с образованием солей или с полифункциональными аминами с образованием сульфамидных групп.
2. Атомы хлора главной цепи, особенно если они связаны с третичным атомом углерода, могут взаимодействовать с гликолями, диаминами и другими группами с выделением НС1 и образованием сшитых продуктов.
3. Двойные связи, образовавшиеся при отщеплении НС1 или SO2, могут реагировать с серой и ускорителями вулканизации так же, как в случае каучука.
В отличие от полиэтилена, у которого для разрушения кристаллической структуры и образования эластомера требуется довольно глубокое хлорирование (25—40%), при аморфизации полипропилена достаточно хлорсульфонирования до содержания - 1%. Рекомендуется применять полипропилен с молекулярным весом более 5000, содержанием кристаллической фракции не более 10% и содержанием хлора до 20%. При вулканизации с помощью окислов двухвалентных или многовалентных металлов реакции проходят по схеме:
RSO2Cl + H2O —> HC1 + RSO2OH
PbO + 2HCl —> H2O + PbCI2
PbO + 2RSO2OH —> H2О + (RSО2О)2Рb
Реакции могут протекать только в присутствии воды. В противном случае вулканизация либо вообще не имеет места, либо происходит крайне медленно. Помимо окислов металлов (10—40% от веса полипропилена), типичные вулканизационные системы обычно содержат 4—7 ч. органической кислоты и 1—3 ч. ускорителей (чаще всего меркаптобензтиазола) , а иногда и органическую перекись или сажу . Температуру вулканизации следует поддерживать в пределах 150—170° С. Хлорсульфонированный полипропилен, сшитый тиомочевиной или диаминами , имеет меньшие эластичность по отскоку и модуль упругости, чем спштый окислами металлов .
Хлорфосфорилирование полипропилена
При хлорфосфорилировании в полипропиленовую цепь можно ввести различное количество дихлорфосфоновых групп.
Реакция может быть осуществлена
при обычной температуре
Полимер с фосфоновыми группами—РО(ОН)з, которые возникают в результате гидролиза гигроскопического полимера с группами—РОСl2, можно вулканизовать окислами двухвалентных металлов в эластомеры, отличающиеся хорошей озоностойкостью . Вулканизованный продукт обладает ионообменными свойствами, значительно более устойчив к неполярным растворителям, при содержании 4,7% фосфора приобретает свойства самозатухания. Были получены соответствующие амиды и сложные эфиры фосфоновых кислот . Функциональные группы этого типа, связанные с макромолекулами поверхностного слоя изделий из полипропилена, например волокон, существенно улучшают их свето- и термоокислнтельную стойкость, окрашиваемость, качество на ощупь и сорбцнонную способность. Цугом конденсации через дихлорфосфоновые группы на по.дипропилене фиксируются стабилизаторы. Раствором низкофосфорилированного (до 3% фосфора) атактического полипропилена можно пропитывать целлюлозные ткани .
Другие химические методы модификации полипропилена
Наряду с рассмотренными выше применяют и другие методы направленного изменения технически важных свойств полипропилена. В результате нитрования порошкообразного полимера или волокон азотной кислотой при 20—130° С или двуокисью азота улучшается его способность окрашиваться основными и дисперсными красителями, а благодаря наличию функциональных групп —ООН и —ONO к полипропилену можно прививать различные мономеры. С этой же целью полипропилен нитрозируют NOC1 при облучении ультрафиолетовым светом , обрабатывают газообразным или жидким фосгеном в серной кислоте или циклогексане , сульфируют или сульфокисляют при действии радиационного облучения . После обработки поверхности сульфированной полипропиленовой пленки водным раствором поливинилового спирта она становится непроницаемой для масел и паров органических растворителей . Введение спиртовых групп в макромолекулу полипропилена достигается в результате окисления полипропилена и последующего восстановления гидроперекисных групп с помощью HI или триалкилалюминия ; при этом повышается стойкость к окислению и старению и появляется возможность окрашивания азокрасителями.
Кроме того, представляют
интерес каталитическое гидрирование
полипропилена с целью
Модификация методом привитой полимеризации
Одним из новых направлений синтеза полимеров с заданными физическими, механическими или химическими свойствами является метод привитой полимеризации . Химическая структура макромолекулы полипропилена позволяет осуществлять прививку мономеров винилового типа как за счет реакций передачи цепи, так и за счет использования неустойчивых перекисных групп в окисленном полипропилене. Перспективен также и метод прививки к иолипропилсиу, активированному облучением. Сущность прививки по радикальному механизму заключается в образовании макрорадикалов полипропилена, к которым при последующей полимеризации присоединяются боковые цепи другого полимера.
В результате привитой полимеризации
подавляются или даже полностью
устраняются такие отрицательны
Привитая полимеризация основаная на на реакции передачи цепи
Один из наиболее простых методов получения привитых сополимеров полипропилена — прививка за счет реакций передачи цепи, когда полимеризуется мономер, инициированный свободными радикалами в присутствии полипропилена. Полипропиленовый макрорадикал образуется в результате реакции макрорадикала полимеризующегося мономера с макромолекулой полипропилена:
О различной реакционной способности связей С—Н уже упоминалось раньше. К образовавшемуся таким путем макрорадикалу присоединяются молекулы мономера, т. е. возникает привитой полимер:
Одновременно с привитым полимером в системе образуется и нежелательный гомополимер.
Привитая полимеризация под действием радиационного облучения
При этом методе получения
привитого полипропилена исполь
В первом случае процесс прививки легче поддается контролю. Степень прививки определяется дозой облучения, величиной поверхности полимера, температурой, временем контакта мономера, его растворимостью в полимере и скоростью диффузии к реакционным центрам. В зависимости от выбранных условий прививать можно как ко всем макромолекулам полипропилена, так и только к макромолекулам поверхностного слоя изделий.
При проведении процесса в гомогенной системе полимер подвергают набуханию в мономере, а затем облучают. При этом образуется также и гомополимер вследствие инициирования полимеризации мономера. Прививка к полипропилену в растворе или в эмульсии изучена недостаточно.
Сшивание полипропилена
Выше уже упоминались методы сшивания полипропилена под действием излучения высокой энергии , прививкой различных мономеров в присутствии перекисей , прививкой полифункциональных мономеров , сшиванием хлорированного и хлорфосфорилированного полимера с бифункциональными аминами , вулканизацией хлорсульфонированного и хлорфосфорилированного полииропилена металлическими окислами. Наряду с ними широкое распространение получают сшивание и разветвление полипропилена перекисями и в особенности применение системы вулканизующих агентов перекись—сера .
При сшивании полипропилена, вызванном термическим разложением перекисей, одновременно происходит его деструкция. При низких концентрациях перекисей (до 0,05 моль/кг при температуре реакции 73° С) деструкция преобладает и поддается контролю. Выбор условий процесса зависит от величины исходного молекулярного веса, а его снижение определяется температурой, которой соответствует определенная эффективная концентрация перекиси . Скорость деструкции связана с концентрацией перекиси степенной зависимостью , а скорость структурирования прямо пропорциональна концентрации перекиси, поэтому при высоких концентрациях реакция структурирования начинает преобладать. Этот эффект используется для стереогибридизации смеси изотак-тического и атактического полипропилена, чем достигается существенное улучшение его морозостойкости. Гибридный стереоизомер представляет собой смесь привитых и блоксополимеров изотакти-ческого полипропилена с атактическим.
Метод вулканизации серой можно
применить также и к смеси
аморфного гюлиолефина с
Старение и стабилизация полипропилена
Механизм реакции окисления
Согласно существующим представлениям о механизме термоокислительной деструкции полипропилена , процесс окисления, протекающий довольно быстро уже при температурах выше 100° С, проходит через стадии образования и разложения гидроперекисей, что обусловливает его автокаталитический характер. Зависимость скорости поглощения кислорода полимером от времени описывается уравнением Семенова для цепных реакций с вырожденными разветвлениями:
где А, j—постоянные;
DO2—количество вступившего в реакцию кислорода;
t—продолжительность процесса.
Исследованиями установлено,
что первичным продуктом
В настоящее время можно считать общепризнанным, что радикальноцепной процесс окисления полипропилена протекает по такому же механизму, как и других сложных углеводородов , и может быть описан следующей схемой реакций:
Реакция 1 представляет собой первичную инициирующую реакцию: образование радикала происходит либо за счет прямого взаимодействия углеводорода с кислородом
либо в результате разрыва связи С—С под действием коротковолнового излучения. На начальной стадии окисления преобладают непосредственные реакции углеводорода с кислородом, а позже превалирует инициирование за счет разложения гидроперекисей по реакциям 4—6.
Анализ возможных реакций распада гидроперекисей позволяет объяснить все химические изменения в полипропилене при термоокислительной деструкции, за исключением образования окислов углерода и кислот, которые появляются в конце процесса, по-видимому, в результате окисления продуктов, возникших на предшествующих стадиях реакции.
Схемы,
образования различных
I. Распад гидроперекисей
В цепи появляется одиночная группа
а) Взаимодействие гидроперекиси по связи С—Н соседней цепи. Появляется одиночная группа
б) Взаимодействие гидроперекиси по связи С—Н той же цепи. Возникает структура:
а) Взаимодействие гидроперекисей соседних цепей друг с другом. В макроцепях образуются группы
б) Взаимодействие гидроперекисей соседних третичных атомов углерода одной цепи. Возникает структура:
II. Реакции групп
1. Реакции одиночной группы
а) Вследствие отрыва водорода от своей или соседней цепи образуется гидроксильная группа.
б) Схема разрыва макромолекулы:
Таким образом, реакции окисления протекают в такой последовательности:
2. Реакции групп —С—О. в цепях со структурой I, 2б:
3. Группы —С—О. в структурах, возникших по реакциям I, За и I, 3б, действуют как одиночные группы —С—О. .Итак, гидроксильные группы появляются в цепи по реакциям II, 1а и II, 1б. Группы С=0 образуются по реакциям II, 1б и II, 2, двойные связи—по реакции II, 2, ацетальдегид и формальдегид—по реакциям II, 1б. Снижение молекулярного веса полипропилена вызывают реакции II, 1б и II, 2. Вода образуется при бимолекулярном распаде гидроперекисей.
Ингибиторы цепной реакции окисления
Ингибиторы разветвленной цепной реакции окисления углеводородов можно разделить на три класса:
1. Вещества, вступающие в реакцию с радикалами с образованием малоактивных продуктов.
2. Вещества, вступающие в реакцию с гидроперекисями с образованием неактивных продуктов.
3. Вещества, поглощающие ультрафиолетовые лучи и препятствующие тем самым разрыву связей в молекуле углеводорода .
Вещества , реагирующие с радикалами с образованием малоактивных продуктов
К наиболее распространенным ингибиторам этого класса относятся замещенные фенолы и ароматические амины. В результате исследования механизма ингибирования цепной реакции окисления различных углеводородов выделены два типа ингибиторов:
а) взаимодействующие с радикалом с отдачей водорода
причем образуются гидроперекись и малоактивный радикал;
б) ингибиторы, ароматические кольца которых образуют с радикалом комплекс и тем самым стабилизируют его . Этот механизм действия ингибиторов до сих пор еще не был достаточно хорошо, изучен.
Реакция по механизму а) предполагает легкий отрыв водорода от молекулы ингибитора. Исходя из этого можно сделать некоторые предположения о структуре веществ, которые могут использоваться в качестве ингибиторов.
1. Водород легко отрывается в том случае, если оставшийся неспаренный электрон имеет возможность сопряжения с более обширной п-электронной системой в молекуле. Чем больше энергия сопряжения, тем меньше прочность связи водорода в молекуле. Это наиболее характерно для ароматических соединений.
2. Как правило, водород отрывается от группы ОН или NH гомолитически (по указанным выше схемам реакций). В этих связях электроны смещены к атомам азота и кислорода. Поэтому каждый заместитель, который увеличивает плотность электронов реакционной группы, облегчает непарный разрыв связи NH или ОН.