Автор работы: Пользователь скрыл имя, 30 Мая 2013 в 18:12, реферат
Сталь вошла в жизнь человека сравнительно поздно, причем не сразу. Сначала частичное применение нашел чугун. Вероятно, одной из первых цельнометаллических конструкций был Невянский завод на Урале, построенный в 1725 г. Первый чугунный мост был построен в 1779 г. на р. Северн в Англии. Но это были лишь особые случаи, так как металлургия была еще слабо развита, возможности чугуна весьма ограничены, а методы соединения отдельных элементов из этого принципиально нового для своего времени материала в целостную конструкцию не были разработаны.
Введение……………………………………………………3
Сталь: состав и его влияние на формирование основных свойств стали……………………………………………….4
Технология производства стали…………..………………9
Основные технико-эксплуатационные свойства
стали……………………………………………………….17
Физико-химические методы исследования свойств
стали………………………………………………….……20
Заключение………………………………………………..28
Список литературы……………………………………….29
1 – электрод
2 – головка электродержателя
3 – свод
4 – подвеска свода
5 – сводное кольцо
6 – цилиндричекий кожух
7 – рабочая площадка
8 – механизм наклона печи
9 – желоб для слива сталей
Рис. 2 Дуговая сталеплавильная печь.
После расплавлении шихты, когда ванна покрывает ровным слоем шлака, дуга стабилизируется и горит ровно.
Выплавка стали в кислых электродуговых печах. Электродуговые печи с кислой футеровкой обычно используются при выплавке стали для фасонного литья. Емкость их составляет от 0,5 до 6,0-10 т. Кислая футеровка более термостойкая и позволяет эксплуатировать печь с учетом условий прерывной работы многих литейных цехов машиностроительных заводов. Основным недостатком печей с кислой футеровкой является то, что во время плавки из металла не удаляются сера и фосфор. Отсюда, очень высокие требования к качеству применяемой шихты по содержанию этих примесей.
Плавление в кислой печи длится примерно так же, как в основной печи (50-70 мин). В окислительный период удалятся меньшее количество углерода (0,1 - 0,2 %) и из-за повышенного содержания FeO в шлаке металл кипит без присадок железной руды. Содержание SiO2 в шлаке к концу окислительного периода повышается до 55 - 65 %. Когда металл нагрет, начинается восстановление кремния по реакции:
(SiO2) + 2[C] = [Si] + 2COгаз
К концу окислительного процесса содержание Si в металле увеличивается до 0,2 - 0,4 %. Раскисление стали перед выпуском может проводиться как в печи, так и в конце.
Способы интенсификации выплавки стали в большегрузных печах. Одношлаковый процесс. Технология выплавки стали под одним шлаком без восстановительного периода применяется для выплавки мартеновского сортамента сталей. После окончания проведения окислите1льного периода присаживают силикомарганец и феррохром в необходимом количестве для получения требуемого химического состава данной марки стали, улучшают шлак добавкой извести, флюсов. Затем сталь выпускают в ковш, где проводят окончательное раскисление и легирование.
Рис. 3 Технологическая схема производства стали в дуговой сталеплавильной печи
Плавка с рафинированием в ковше печным шлаком. Применяется на печах емкостью 100 - 200 т. После окончания окислительного периода и раскисления металла наводят новый шлак с высоким содержанием СаО. В течение 40 - 60 мин шлак раскисляют молотым коксом и ферросилицием. Перед выпуском в шлак дают CaF2. Высокое (10 - 20 %) содержание CaF2 обеспечивает высокую рафинирующую способность шлака. При выпуске из печи вначале выпускают в ковш жидкий шлак и затем мощной струей металл. Перемешивание металла со шлаком обеспечивает высокую степень рафинирования от примесей (от серы) и неметаллических включений. Одной из форм рафинирования стали в ковше можно считать технологию синтетических шлаков на основе СаО - Al2O3. В этом случае требуются дополнительные затраты для плавления шлака.
Плавка стали в индукционной печи. В индукционных печах для выплавки металла используется тепло, которое выделяется в металле за счет возбуждения в нем электрического тока переменным магнитным полем. Источником магнитного поля в индукционной печи служит индуктор. Проводящая электрический ток шихта, помещенная в тигель печи, подвергается воздействию переменного магнитного поля, возникающего от индуктора, нагревается в следствие теплового воздействия вихревых токов.
По сравнению с дуговыми электропечами индукционные печи имеют ряд преимуществ: отсутствие электродов и электрических дуг позволяет получать стали и сплавы с низким содержанием углерода и газов; плавка характеризуется низким угаром легирующих элементов, высоким техническим КПД и возможностью точного регулирования температуры металла.
Рис. 4 Схема индукционной печи
1 – каркас; 2 – подовая плита; 3 – водоохлаждаемый индуктор; 4 – изоляционный слой; 5 – тигель; 6 – абсоцементная плита; 7 – сливной носок; 8 – воротник; 9 – гибкий токоподвод; 10 – опорные брусья
Индукционная печь состоит из огнеупорного тигля, помещенного в индуктор. Индуктор представляет собой соленоид, выполненный из медной водоохлаждаемой трубки. Ток к индуктору подается гибкими кабелями. Воду для охлаждения подводят резиновыми шлангами. Вся печь заключена в металлический кожух. Сверху тигель закрывается сводом. Для слива металла печь может наклоняться в сторону сливного носка.
Тигель печи изготавливается набивкой или выкладывается кирпичом. Для набивки используют молотые огнеупорные материалы - основные (магнезит) или кислые (кварцит).
Поскольку плавка в индукционной печи происходит очень быстро, шихта для нее используется, как правило, из высококачественного металлолома известного состава. Перед плавкой происходит точный расчет шихты по содержанию углерода, серы и фосфора, а также легирующих элементов. Шихту загружают в тигель таким образом, чтобы она плотно заполняла весь объем тигля. После загрузки шихты включают ток на полную мощность. По мере проплавления шихты загружают оставшуюся часть. Затем на поверхность металла загружают шлакообразующую смесь, состоящую из извести, магнезитового порошка и плавикового шпата. В процессе плавки шлак раскисляют добавками порошка кокса и молотого раскислителя. По ходу плавки добавляют легирующие материалы. Металл раскисляют кусковыми ферросплавами и в конце плавки алюминием.
В индукционных печах выплавляют, как правило, стали и сплавы сложного химического состава.
Разливка стали
Разливка стали в слитки. Из сталеплавильного агрегата сталь выпускается в сталеразливочный ковш, предназначенный для кратковременного хранения и разливки стали. Сталеразливочный ковш (рис ) имеет форму усеченного конуса с большим основанием вверху. Ковш имеет сварной кожух, изнутри футеруется огнеупорным шамотным кирпичом. Перемещают ковш с помощью мостового крана или на специальной железнодорожной тележке.
.
Рис. 5 Схема разливки стали по изложницам
а (разливка сверху): 1 – сталеразливочный ковш; 2 – изложница; 3 – поддон;
б (разливка сифоном): 1 – сталеразливочный ковш; 2 – центровая трубка; 3 – прибыльная надставка; 4 – изложница;
5 – поддон; 6 – сифонные трубки
Сталь из ковша разливают через один или два стакана, расположенных в днище ковша. Отверстие закрывают или открывают изнутри огнеупорной пробкой при помощи стопора.
Емкость сталеразливочных ковшей достигает 480 т.
В сталеплавильных цехах сталь из ковша разливают либо в изложницы, либо на машинах непрерывной разливки
Рис. 6 Общий вид сталеразливочного ковша:
1 – цапфа; 2 – носок для слива шлака 3 – стопор; 4 – скоба для кантования ковша
Пути повышения качества стали
Непрерывное развитие техники представляет все более высокие требования к качеству стали.
Многочисленные способы получения металлов высокого качества могут быть условно разделены на три группы:
Обработка жидкого металла вне сталеплавильного агрегата. При внепечной обработке металл, выплавленный в обычном сталеплавильном агрегате (мартеновской печи, конвертере или электропечи), подвергается внешнему воздействию в сталеразливочном ковше. Основной целью внепечной обработки жидкой стали в ковше является снижение содержания растворенных в металле газов, неметаллических включений и серы.
В настоящее время нет такого способа обработки жидкой стали в ковше, который позволил бы одновременно значительно снизить в металле содержание неметаллических включений, серы и газов. Поэтому в зависимости от поставленной задачи применяется тот или иной способ внепечной обработки металлов.
Обработка металлов в ковше синтетическим шлаком приводит к снижению в стали серы, неметаллических включений и кислорода. Сущность метода заключается в том, что металл выпускают из печи в ковш, частично заполненный жидким шлаком (4 - 5 % от массы металла), который предварительно выплавляют в специальном агрегате. Жидкий шлак и металл интенсивно перемешиваются. Сера, кислород и неметаллические включения переходят из металла в шлак. При обработке металла синтетическим шлаком важную роль играет его состав и физико-химические свойства. Шлак должен иметь низкие температуру плавления и вязкость, а также обладать высокой основностью и низкой окисленностью. Этим требованиям отвечают известково-глиноземистые шлаки, содержащие 50 - 55 % СаО, 38 - 42 % Al2O3, 1,5 - 4 % SiO2, 0,15 - 0,5 % FeO. Шлаки такого состава обладают высокой рафинирующей способностью.
Повышение качества стали, обработанной синтетическим шлаком, компенсируют затраты, связанные с выплавкой такого шлака.
Продувка
металла в ковше
Жидкий металл в потоке инертного газа (аргона) через фурму вводят измельченные десульфураторы и раскислители. В результате такой обработки можно получить металл с содержанием серы и кислорода менее 0,005 % каждого.
Обработка жидкой стали аргоном в ковше является наиболее простым способом повышения качества металла. Аргон вдувают в жидкую сталь через пористые и огнеупорные пробки, которые устанавливают в днище ковша. Аргон не растворяется в жидкой стали, поэтому при продувке металла аргоном в объеме жидкой стали образуется большое количество пузырей, которые интенсивно перемешивают металл и выносят на его поверхность неметаллические включения. Кроме того, водород и азот, растворенные в стали, переходят в пузыри аргона и вместе с ним покидают жидкий металл, т. е. происходит дегазация стали.
Внепечная обработка жидкой стали вакуумом в промышленных масштабах стала применятся сначала 50-х годов.
Существует большое количество методов вакуумной обработки стали. Некоторые принципиальные схемы приведены ниже:
Рис. 7 Схемы установок вакуумирования жидкой стали
Наиболее простым способом является вакуумирование стали в ковше (а). В этом случае ковш с жидким металлом помещают в герметичную камеру, из которой откачивают воздух. При снижении давления в камере металл закипает вследствие бурного выделения из металлов газов. После дегазации металла камеру разгерметизируют, а ковш с вакуумированной отправляют на разливку.
Ковшевое вакуумирование неэффективно
при обработке полностью
Парционное и циркуляционное вакуумирование стали (рис б и в ) применяют при дегазации больших масс металла.
При парционном вакуумировании футурованная вакуумная камера не большого объема помещается над ковшом с жидким металлом. Патрубок камеры, футерованный изнутри и снаружи, погружен в жидкий металл. Под действием атмосферного давления порция металла (10 - 15 % от общей массы) поднимается в камеру и дегазируется. При движении ковша вниз или камеры вверх металл вытекает, а при обратном движении вновь поднимается в камеру, для полной дегазации стали необходимо провести от 30 до 60 циклов вакуумной обработки.
При циркуляционном способе вакуумирования стали применяют вакуумную камеру с двумя патрубками. Жидкий металл из ковша поднимается в камеру по одному патрубку, дегазируется и вытекает обратно в ковш по второму патрубку. Происходит непрерывная циркуляция металла через вакуумную камеру. Подъем жидкой стали в камеру происходит за счет эжектирующего действия аргона, который подают во входной патрубок.
Струйное вакуумирование металла применяется в основном при отливке крупных слитков (рис г). этот способ является более совершенным, т. к. устраняется вторичное окисление при разливке вакуумированного металла из ковша в изложницы.
При отливке слитков в вакууме струя металла, переливаемого из ковша а изложницу, установленную в вакуумной камере, разрывается выделяющимися газами на множество мелких капель металла. Поверхность металла резко возрастает, что приводит глубокой дегазации стали. Кроме того, сталь также дегазируется в изложницы.
Последнее время для получения стали с очень низким содержанием углерода обработку металла в вакууме совмещают с продувкой его кислорода или смесью аргона и кислорода.
Производство стали в вакуумных печах. Применение вакуума при выплавки стали позволяет получать металл практически любого химического состава с низким содержанием газов, неметаллических включений, примесей цветных металлов.
Как уже отмечалось, реакции дегазации
и раскисления металла
Производство стали в вакуумных индукционных печах. В настоящее время вакуумные индукционные печи делятся на периодические и полунепрерывные. В печах периодического действия после каждой плавки печь открывают для извлечения слитка и загрузки шихты. В печах полунепрерывного действия загрузка шихты, смена изложниц и извлечение слитка проводятся без нарушения вакуума в плавильной камере.
В промышленности применяют печи полунепрерывного действия. Печи периодического действия используют в основном в лабораториях и для фасонного литья. Емкость существующих вакуумных индукционных печей достигает 60 т.
Рис. 8 Схема вакуумной индукционной печи полунепрерывного действия
Здесь показана схема вакуумной индукционной печи полунепрерывного действия. Печи этого типа имеют три камеры: плавильную (2), загрузочную (8) и камеру изложниц (1). В плавильной камере установлен водоохлаждаемый индикатор с огнеупорным тиглем (3), в котором проводиться плавление шихты. Каркас тигля, выполненный из уголков нержавеющей стали, опирается на цапфы. При сливе металла и чистке тигля последний наклоняется с помощью механического или гидравлического привода. Камера изложниц и загрузочная камера сообщаются с плавильной камерой через вакуумные затворы (6 и15), которые позволяют загружать шихту в печь и выгружать слиток без нарушения вакуума в плавильной камере. Присадка легирующих и раскислителей осуществляется через дозатор (10), установленный на крышке печи (7). Для контроля процесса плавки печь снабжена гляделкой (4) и термопарой (5).
Информация о работе Производство стали и методы исследования ее свойств