Применение комплексных соединений в аналитической химии

Автор работы: Пользователь скрыл имя, 22 Октября 2015 в 08:42, реферат

Краткое описание

Обширную группу химических соединений составляют комплексы, в молекулах которых всегда можно выделить центральный атом или ион, вокруг которого сгруппированы другие ионы или молекулярные группы.
Комплексы имеют исключительно большое значение в живой и неживой природе. Гемоглобин, благодаря которому осуществляется перенос кислорода из легких к клеткам ткани, является комплексом железа, а хлорофилл, ответственный за фотосинтез в растениях, – комплексом магния.

Прикрепленные файлы: 1 файл

Primenenie_komplexnykh_soedineniy_v_analiticheskoy_khimii.doc

— 206.00 Кб (Скачать документ)

Реакция с гексацианоферратом (II) калия K4[Fe(CN)6]3.

K4[Fe(CN)6] даёт с солями Fe3+ в кислой среде синий осадок называемой берлинской лазури:

4FeCl3 + 3 K4[Fe(CN)6] = Fe4[Fe(CN)6]3  + 12KCl


или в ионном виде:

4Fe3+ + 3[Fe(CN)6] = Fe4[Fe(CN)6]3

Выполнение.

К 4—5 каплям раствора FeCl3 добавить 2—3 капли соляной кислоты и 4—5 капель раствора реактива. Наблюдать выпадение осадка железистосинеродистого железа. Реакция очень чувствительна и применяется для открытия ионов Fe3+ в анализируемом растворе. Щелочи разлагают берлинскую лазурь с образованием Fe(OH)3. К осадку Fe4[Fe(CN)6]3 прилить 8—10 капель раствора едкого натра и сильно встряхнуть. Реакция можно выполнять капельным методом на фильтровальной бумаге или на капельной пластинке.

Реакции катионов двухвалентного железа

Реакция с гексацианоферратом (III) калия K3[Fe(CN)6].

K3[Fe(CN)6], называемый красной кровяной солью, дает с солями Fe2+ в кислой среде темно-синий осадок железосинеродистой закиси железа (турнбулева синь) Fe3[Fe(CN)6]2:

3FeSO4 + K3[Fe(CN)6] = Fe3[Fe(CN)6]2  + K2SO4


или в ионном виде:

3Fe2+ + [Fe(CN)6]3- = Fe3[Fe(CN)6]2

Выполнение.

К 5—6 каплям раствора соли Fe2+ прибавить 2—3 капли соляной или серной кислоты (для подавления гидролиза соли) и 2—3 капли раствора реактива. Тотчас же выпадает темно-синий осадок турнбулевой сини. Это наиболее чувствительная реакция на ион Fe2+.

Осадок Fe3[Fe(CN)6]2 разлагается щелочами с образованием Fe(OH)2:

Fe3[Fe(CN)6]2 + 6 NaOH = 3Fe(OH)2  + 2 Na3[Fe(CN)6]


или в ионном виде:

Fe3[Fe(CN)6]2 + 6OH- = 3 Fe(OH)2 + [Fe(CN)6]3-

К осадку турнбулевой сини прилить несколько капель раствора едкого натра.

Реакция с железосинеродистым калием удобно проводить капельным методом на фильтровальной бумаге или на капельной пластинке.

Реакции катионов цинка

Реакция с гексацианоферратом (II) калия K4[Fe(CN)6]3.

K4[Fe(CN)6] образует с ионами цинка белый осадок железистосинеродистого калия и цинка:

3ZnCl2 + 2K4[Fe(CN)6] = Zn3K2[Fe(CN)6]2  + 6KCl


или в ионном виде:

3Zn2+ + 2 K+ 2[Fe(CN)6] = Zn3K2[Fe(CN)6]2

Выполнение.

К 4—5 каплям раствора соли цинка прибавить 4—5 капель раствора реактива. Нагреть смесь до кипения. Наблюдать образование осадка.

В кислотах не растворяется, но растворяется в едких щелочах с образованием цинката.

Четвертая группа катионов

Относятся катионы Hg2+, Cu2+, Bi3+, Ag+, Pb2+.

Сернистые соединения этих металлов не растворимы в разбавленных кислотах. Осаждаются они сероводородом в кислой среде и таким образом могут быть отделены от катионов 1, 2, 3-й групп. На этом основании сероводород в кислой среде считается их групповым реактивом.

Многие катионы 4-й группы склоны к образованию прочных комплексов с аммиаком, цианистыми соединениями и другими веществами, что с успехом используется в аналитической химии.

Реакции катионов меди

Реакция с гексацианоферратом (II) калия K4[Fe(CN)6]3.

K4[Fe(CN)6] выделяет из раствора солей двухвалентной меди красно-бурой осадок железистосинеродистой меди Cu2[Fe(CN)6]:

2CuSO4 + K4[Fe(CN)6] = Cu2[Fe(CN)6]  + 2K2SO4


или в ионном виде:

2Cu2+ + [Fe(CN)6]4- = Cu2[Fe(CN)6]

Осадок не растворим в разбавленных кислотах, но растворяется в NH4OH, образуя аммиакат меди:

Cu2[Fe(CN)6] + 12NH4OH = 2[Cu(NH4)3](OH)2 + (NH4)4[Fe(CN)6] + 8H2O

или в ионном виде:

Cu2[Fe(CN)6] + 8NH3 = 2[Cu(NH4)3]2+ + [Fe(CN)6]4-

Пятая группа катионов

К пятой аналитической группе относятся катионы мышьяка, сурьмы, олова.

Сернистые соединения этих элементов не растворимы в разбавленных кислотах. От сернистых соединений катионов 4-й группы сернистые соединения катионов 5-й группы отличает растворимостью в многосернистом аммонии с образованием так называемых сульфосолей. Это позволяет отделить сернистые соединения мышьяка, сурьмы, олова от не растворимых в многосернистом аммонии сернистые соединения 4-й группы.

Групповой реактив на ионы 5-й группы – многосернистый аммоний, который представляет собой смесь (NH4)2S с (NH4)2S2, (NH4)2S3 и другими подобными соединениями вплоть до (NH4)2S9. Многосернистый аммоний готовят, растворяя серу в сернистом аммонии. Он является окислителем.

 

 

1.5.2. КОМПЛЕКСОНОМЕТРИЯ

Понятие.

В санитарно-клиническом анализе для количественного определения ионов металлов широко используется комплексонометрия.

Комплексонометрия — метод количественного анализа, основанный на реакции комплексообразования с получением прочных хелатных соединений металлов с комплексонами.

Комплексонами называются полидентатные лиганды, способные образовывать устойчивые хелатные комплексные соединения. В аналитической практике в качестве комплексона чаще всего используют трилон Б, обозначаемый для краткости Na2H2T. Этот 6-дентатный лиганд образует очень устойчивые комплексы с большинством катионов металлов. Метод комплексонометрии на основе трилона Б называется трилонометрией. Наиболее ценным свойством трилона Б является его способность образовывать очень устойчивые бесцветные комплексы с катионами большинства металлов, при этом реакция всегда протекает в соотношении 1 : 1 и с вытеснением двух протонов, независимо от заряда катиона металла:

М+ + (Н2Т)2- çè [МТ]3- + 2Н+      М2+ + (Н2Т)2- çè [МТ]2- + 2Н+

М3+ + (Н2Т)2- çè [МТ]- + 2Н+      М4+ + (Н2Т)2- çè [МТ]° + 2Н+

Учитывая обратимость этого взаимодействия, необходимо поддерживать определенное значение pH для обеспечения полного протекания аналитической реакции. Оптимальное значение рH определяется устойчивостью комплекса и растворимостью гидроксида определяемого металла.

Для установления точки эквивалентности в комплексонометрии применяют металлоиндикаторы. Особенностями этих индикаторов, точнее их анионов, является способность образовывать с катионом определяемого металла комплекс, окраска которого отличается от окраски свободного аниона индикатора:

M2+ Ind2- çè[MInd]0

окраска I  окраска II

Катион определяемого металла в присутствии и аниона индикатора Ind2-, и аниона трилона Б (Н2Т)2- взаимодействует с обоими веществами, но больше с тем, которое образует более устойчивый комплекс:

 

                                   (H2T)2-               Ind2-

[MT]2- + 2H+ ßà M2+ ßà [Mind]

                   Условие Кнест (MT2-) < Кнест (Mind)

ç  ç  ç  ç  ç  ç  ç  ç  ç  ç  ç  ç  ç  ç

Смешение равновесия при трилонометрии

Поэтому, чтобы равновесие было смещено в сторону комплекса с трилоном Б [МТ]2-, его устойчивость должна быть больше, т. е. Кнест (MT2-) < Кнест (Mind)

При добавлении к анализируемому раствору индикатор образует вначале комплекс [МInd] и раствор принимает окраску II, характерную для этого комплекса. При добавлении к окрашенному раствору раствора трилона Б он сначала реагирует со свободными ионами анализируемого металла с образованием бесцветного комплекса [МТ]2- и только вблизи состояния эквивалентности происходит разрушение комплекса с индикатором [МInd] в соответствии с реакцией:

[МInd]0 + (Н2Т)2- è [МТ]2- + Ind2- + 2Н+

окраска II                                                                                               окраска I

В точке эквивалентности окраска раствора резко изменяется (окраска II è окраска I), так как комплекс с индикатором окончательно исчезает, а в растворе содержатся только свободный индикатор и бесцветный комплекс [МТ]2-. Таким образом, процесс, протекающий при трилонометрическом определении, например, двухзарядного катиона металла, отражают следующие реакции:

I стадия:  М2+ + Ind2- è [МInd]0

окраска I                         окраска II

II стадия: аМ2+ + а(Н2Т)2- + 2aOH-  è  а[MT]2- + 2аН2О

III стадия: МInd + (Н2Т)2- è  МТ2- + Ind2- + 2Н+

аМ2+ + [МInd] + (а + 1)(Н2Т)2- + 2аОН- è (а + 1) [MT]2- + Ind2- + 2aH2O + 2Н+

окраска II окраска I

где а » 1.

Трилонометрия широко используется в санитарно-клиническом анализе для определения содержания ионов кальция, цинка, магния, железа в фармацевтических препаратах, общего кальция (ионизованного, связанного, диффундирующего и недиффундирующего) в сыворотке крови, костях и хрящах, а также при анализе жесткости воды, обусловленной наличием в ней ионов Са2+ и Мg2+.

Суммируя все сказанное о химических превращениях, обеспечивающих метаболизм нашего организма: кислотно-основном (обмен протонами); окислительно-восстановительном (обмен электронами); комплексообразовании (взаимодействие свободных атомных орбиталей комплексообразователя и электронных пар лиганда ),следует выделить для них общее. В основе всех этих процессов находится принцип единства и борьбы противоположностей "акцептора - донора", и все они в организме носят в основном обратимый характер, что обеспечивает большинству из них самопроизвольное протекание и способствует поддержанию гомеостаза в организме.

Другая особенность всех рассмотренных реакций заключается в том, что они в условиях организма обычно являются электрофильно-нуклеофильными.

В кислотно-основных реакциях кислота как донор Н+ выступает электрофилом, а основание - нуклеофилом.

В реакциях комплексообразования комплексообразователь как акцептор электронных пар является электрофилом, а лиганды -нуклеофилами.

В окислительно-восстановительных реакциях окислитель - акцептор электронов - выступает электрофилом, а восстановитель -нуклеофилом. Особенность окислительно-восстановительных реакций заключается в том, что они могут протекать и по свободно-радикальному механизму. В этом случае реагирующая частица с неспаренным электроном - свободный радикал - может быть и акцептором и донором электрона в зависимости от свойств партнера, с которым она взаимодействует. Сравнивая степени окисления атомов в исходных и конечных веществах (а не в радикалах), можно и в этом случае четко определить, что окислитель, а что восстановитель.

 

 

Заключение

Комплексные соединения действительно имеют самое разнообразное применение. Ни один физиологический процесс не происходит без их  участия. Комплексы  находят самое широкое применение в качественном и количественном анализах веществ. В практике химического и фармацевтического анализа наиболее часто применяют комплексен III (торгов звание трилон Б) - кислую двунатриевую соль этилендиаминтетрауксусной кислоты (ЭДТА). Для простоты в уравнениях реакций формулу ЭДТА изображаютNa2Н2Т.

Для широкого применения комплексных соединений очень важно знать особенности химической связи во внутренней сфере комплексных соединений; условия образования, разрушения и трансформации комплексных соединений; особенности строения и функции в организме миоглобина, гемоглобина, метгемоглобина, цитохромов, ионофоров; иметь представление о следующих понятиях и величинах: комплексообразователь, лиганд, координационное число, дентатность лиганда, внутренняя и внешняя сферы комплексного соединения, хелатные и полиядерные комплексные соединения.

Теория комплексных соединений очень интересна своей особенностью и сложностью.

 

 

 

Список использованной литературы

  1. Гликина Ф.Б., Ключников Н.Г. Химия комплексных соединений: Учеб. Пособие для студентов пед. ин-тов. – 3-е изд. – М.: Просвещение, 1986.—160с.
  2. Лидин Р.А. Задачи по общей и неорганической химии: учеб. Пособие для студентов высш. учеб. заведений/ Р.А. Лидин, В.А. Молочко, Л.Л.Андреева; под ред. Р.А. Лидина. – М.: Гуманитар. изд. центр ВЛАДОС, 2004. – 383с.
  3. Пономарев В.Д. Аналитическая химия. – М.: Медицина, 1982, 302с., ил.
  4. Слесарев В. И. Основы химии живого: Учебник для вузов.- 2-е изд., испр. и доп.- СПб: Химиздат, 2001.-784 с.: ил. 
  5. Соколовская Е.М. Общая химия. Под ред. Е.М. Соколовской, Г.Д. Вовченко, Л.С. Гузея. М., Изд-во Моск. ун-та, 1980г. 726с., с ил.

Информация о работе Применение комплексных соединений в аналитической химии