Периодическая система и периодический закон Д.И.Менделеева

Автор работы: Пользователь скрыл имя, 21 Мая 2013 в 13:18, реферат

Краткое описание

Поиски основы естественной классификации химических элементов и их систематизации начались задолго до открытия Периодического закона. Трудности, с которыми сталкивались естествоиспытатели, которые первыми работали в этой области, были вызваны недостаточностью экспериментальных данных: в начале XIX в. число известных химических элементов было ещё слишком невелико, а принятые значения атомных масс многих элементов неточны.
Периодическая система элементов является графичес¬ким (табличным) изображением периодического закона.
Прообразом периодической системы был «Опыт сис¬темы элементов, основанный на их «атомном весе и хими¬ческом сходстве», составленный Д.И. Менделеевым 1 марта 1869 г. Это так называемый вариант длинной формы системы элементов, в нем периоды располагались одной строкой.

Содержание

Введение
История открытия
Структура периодической системы
Значение периодической системы
Развитие периодического закона в XX веке
Периодические свойства химических элементов
Проявления периодического закона в отношении энергии ионизации
Проявления периодического закона в отношении энергии сродства к электрону
Проявления периодического закона в отношении электроотрицательности
Проявление периодического закона в отношении атомных и ионных радиусов
Проявление периодического закона в отношении энергии атомизации
Проявления периодического закона в отношении степени окисления
Проявления периодического закона в отношении окислительного потенциала
Внутренняя и вторичная периодичность
s- и р-элементы
d-Элементы
Периодический закон – основа химической систематики
Парадигма Бора
Диадная модель
Выводы
Список использованной литературы

Прикрепленные файлы: 1 файл

Таблица менделеева.docx

— 217.02 Кб (Скачать документ)

п·о·р

Семейства химических элементов

 
 

Щелочные металлы

 

Неметаллы

 

Щёлочноземельные металлы

 

Галогены

 

Переходные металлы

 

Инертные газы

 

Металлы

 

Лантаноиды

 

Полуметаллы — металлоиды

 

Актиноиды


 

Короткая форма таблицы, содержащая восемь групп элементов, была официально отменена ИЮПАК в 1989 году. Несмотря на рекомендацию использовать длинную форму, короткая форма продолжает приводиться в большом числе российских справочников и пособий и после этого времени. Из современной иностранной литературы короткая форма исключена полностью, вместо неё используется длинная форма. Такую ситуацию некоторые исследователи связывают в том числе с кажущейся рациональной компактностью короткой формы таблицы, а также с инерцией, стереотипностью мышления и невосприятием современной (международной) информации.

В 1970 году Теодор Сиборг предложил расширенную периодическую таблицу элементов. Нильсом Бором разрабатывалась лестничная (пирамидальная) форма периодической системы. Существует и множество других, редко или вовсе не используемых, но весьма оригинальных, способов графического отображения Периодического закона. Сегодня существуют несколько сотен вариантов таблицы, при этом учёные предлагают всё новые варианты

 

 

4.Значение периодической  системы.

Периодическая система Д. И. Менделеева стала важнейшей вехой в развитии атомно-молекулярного учения. Благодаря ей сложилось современное понятие о химическом элементе, были уточнены представления о простых веществах и соединениях.

Прогнозирующая роль периодической  системы, показанная ещё самим Менделеевым, в XX веке проявилась в оценке химических свойств трансурановых элементов.

Разработанная в XIX в. в рамках науки химии, периодическая таблица явилась готовой систематизацией типов атомов для новых разделов физики, получивших развитие в начале XX в. —физики атома и физики ядра. В ходе исследований атома методами физики было установлено, что порядковый номер элемента в таблице Менделеева (атомный номер) является меройэлектрического заряда атомного ядра этого элемента, номер горизонтального ряда (периода) в таблице определяет число электронных оболочек атома, а номер вертикального ряда — квантовую структуру верхней оболочки, чему элементы этого ряда и обязаны сходством химических свойств.

Появление периодической системы  открыло новую, подлинно научную  эру в истории химии и ряде смежных наук — взамен разрозненных сведений об элементах и соединениях появилась стройная система, на основе которой стало возможным обобщать, делать выводы, предвидеть.

 

5.Развитие Периодического закона в XX веке

В начале XX века Периодическая система элементов неоднократно видоизменялась для приведения в соответствие с новейшими научными данными. Д. И. Менделеев и У. Рамзай пришли к выводу о необходимости образования в таблице нулевой группы элементов, в которую вошлиинертные газы. Инертные газы явились, таким образом, элементами, переходными между галогенами и щелочными металлами. Б. Браунер нашёл решение проблемы размещения в таблице редкоземельных элементов, предложив в 1902 году помещать все редкоземельные элементы в одну ячейку; в предложенном им длинном варианте таблицы шестой период таблицы был длиннее, чем четвёртый и пятый, которые, в свою очередь, длиннее, чем второй и третий периоды.

Дальнейшее развитие Периодического закона было связано с успехами физики: установление делимости атома на основании открытия электрона и радиоактивности в конце концов позволило понять причины периодичности свойств химических элементов и создать теорию Периодической системы.

Для химии серьёзную проблему составляла необходимость размещения в Периодической  таблице многочисленных продуктов  радиоактивного распада, имеющих близкие атомные массы, но значительно отличающихся периодами полураспада. Т. Сведберг в 1909 году доказал, что свинец и неон, полученные в результате радиоактивного распада и отличающиеся по величине атомных масс от «обычных» элементов, химически им полностью тождественны. В 1911 году Ф. Содди предложил размещать химически неразличимые элементы, имеющие различные атомные массы (изотопы) в одной ячейке таблицы.

В 1913 году английский физик Г. Мозли установил, что корень из характеристической частоты рентгеновского излучения элемента (ν) линейно зависит от целочисленной величины —атомного номера (Z), который совпадает с номером элемента в Периодической таблице:

ν=R(Z-σ)²(1/m²-1/n²), где R — постоянная Ридберга, σ — постоянная экранирования.

Закон Мозли дал возможность  экспериментально определить положение  элементов в Периодической таблице.

Атомный номер, совпадающий, как предположил  в 1911 г. голландский физик А. Ван ден Брук, с величиной положительного заряда ядра атома, стал основой классификации химических элементов. В 1920 году английский физик Дж. Чедвик экспериментально подтвердил гипотезу Ван ден Брука; тем самым был раскрыт физический смысл порядкового номера элемента в Периодической системе. Периодический закон получил современную формулировку: «Свойства простых веществ, а также формы и свойства соединений элементов находятся в периодической зависимости от зарядов ядер атомов элементов».

В 1921—1923 годах, основываясь на модели атома Бора-Зоммерфельда, представляющей собой компромисс между классическими и квантовыми представлениями, Н. Бор заложил основы формальной теории Периодической системы. Причина периодичности свойств элементов, как показал Бор, заключалась в периодическом повторении строения внешнего электронного уровня атома.

Были разработаны полудлинный (см. выше) и длинный варианты Периодической таблицы, состоящие из блоков, в которых внешние электронные орбитали атомов одинаковы по орбитальному квантовому числу (в упрощённом представлении — по форме). В химии орбитальные квантовые числа обозначаются буквами s, p, d и f. В s- блок входят щелочные и щёлочноземельные металлы, в d — переходные металлы, в f — лантаноиды и актиноиды, в p — остальные элементы. Термины лантаноиды и актиноиды были предложены профессором ЛГУС. А. Щукаревым в 1948 году.

В середине XX века В. М. Клечковский эмпирически установил и теоретически обосновал правило, описывающее последовательность заполнения электронных орбиталей атомов по мере роста заряда ядра. В отличие от предыдущих подходов, это правило учитывает взаимодействие между электронами в атоме.

 

6.Периодические свойства  химических элементов

В принципе, свойства химического  элемента объединяют все без исключения его характеристики в состоянии  свободных атомов или ионов, гидратированных  или сольватированных, в состоянии  простого вещества, а также формы  и свойства образуемых им многочисленных соединений. Но обычно под свойствами химического элемента подразумевают, во-первых, свойства его свободных  атомов и, во-вторых, свойства простого вещества. Большинство этих свойств  проявляет явную периодическую  зависимость от атомных номеров  химических элементов. Среди этих свойств  наиболее важными, имеющими особое значение при объяснении или предсказании химического поведения элементов  и образуемых ими соединений являются:

  • энергия ионизации атомов;
  • энергия сродства атомов к электрону;
  • электроотрицательность;
  • атомные (и ионные) радиусы;
  • энергия атомизации простых веществ
  • степени окисления;
  • окислительные потенциалы простых веществ.

6.1 Проявления периодического закона в отношении энергии ионизации

Зависимость энергии ионизации атома от порядкового номера элемента носит отчетливо периодический характер. Легче всего удалить электрон из атомов щелочных металлов, включающих по одному валентному электрону, труднее всего — из атомов благородных газов, обладающих замкнутой электронной оболочкой. Поэтому периодичность изменения энергии ионизации атомов характеризуется минимумами, отвечающими щелочным металлам, и максимумами, приходящимися на благородные газы. Наряду с этими резко выраженными минимумами и максимумами на кривой энергии ионизации атомов наблюдаются слабо выраженные минимумы и максимумы, которые по-прежнему нетрудно объяснить с учетом упомянутых эффектов экранирования и проникновения, эффектов межэлектронных взаимодействий и т. д.

6.2 Проявления периодического закона в отношении энергии сродства к электрону

Периодичность значений энергий сродства атомов к электрону объясняется, естественно, теми же самыми факторами, которые уже были отмечены при  обсуждении ионизационных потенциалов.

Наибольшим сродством к электрону  обладают p-элементы VII группы. Наименьшее сродство к электрону у атомов с конфигурацией s² (Be, Mg,Zn) и s²p(Ne, Ar) или с наполовину заполненными p-орбиталями (N, P, As).

 

Li

Be

B

C

N

O

F

Ne

Электронная конфигурация

s1

s²p1

s²p²

s²p³

s²p4

s²p5

s²p6

ε, эВ

-0,59

0,19

-0,30

-1,27

0,21

-1,47

-3,45

0,22


 

6.3 Проявления периодического закона в отношении электроотрицательности

Строго говоря, элементу нельзя приписать  постоянную электроотрицательность. Электроотрицательность атома зависит от многих факторов, в частности от валентного состояния атома, формальной степени окисления, координационного числа, природы лигандов, составляющих окружение атома в молекулярной системе, и от некоторых других. В последнее время все чаще для характеристики электроотрицательности используют так называемую орбитальную электроотрицательность, зависящую от типа атомной орбитали, участвующей в образовании связи, и от её электронной заселенности, т. е. от того, занята атомная орбиталь неподелённой электронной парой, однократно заселена неспаренным электроном или является вакантной. Но, несмотря на известные трудности в интерпретации и определении электроотрицательности, она всегда остается необходимой для качественного описания и предсказания природы связей в молекулярной системе, включая энергию связи, распределение электронного заряда и степень ионности, силовую постоянную и т. д.

Периодичность атомной электроотрицательности является важной составной частью периодического закона и легко может быть объяснена, исходя из непреложной, хотя и не совсем однозначной, зависимости значений электроотрицательности от соответствующих значений энергий ионизации и сродства к электрону.

В периодах наблюдается общая тенденция  роста электроотрицательности, а  в подгруппах — её падение. Наименьшая электроотрицательность у s-элементов I группы, наибольшая — у p-элементов VII группы.

6.4  Проявления периодического закона в отношении атомных и ионных радиусов

Периодический характер изменения  размеров атомов и ионов известен давно. Сложность здесь состоит  в том, что из-за волновой природы  электронного движения атомы не имеют  строго определенных размеров. Так  как непосредственное определение  абсолютных размеров (радиусов) изолированных  атомов невозможно, в данном случае часто используют их эмпирические значения. Их получают из измеренных межъядерных  расстояний в кристаллах и свободных  молекулах, разбивая каждое межъядерное  расстояние на две части и приравнивая  одну из них к радиусу первого (из двух связанных соответствующей  химической связью) атома, а другую — к радиусу второго атома. При таком разделении учитывают различные факторы, включая природу химической связи, степени окисления двух связанных атомов, характер координации каждого из них и т. д. Таким способом получают так называемые металлические, ковалентные, ионные и ван-дер-ваальсовы радиусы. Ван-дер-ваальсовы радиусы следует рассматривать как радиусы несвязанных атомов; их находят по межъядерным расстояниям в твердых или жидких веществах, где атомы находятся в непосредственной близости друг от друга (например, атомы Ar в твердом аргоне или атомы N из двух соседних молекул Nв твердом азоте), но не связаны между собой какой-либо химической связью.

Но, очевидно, лучшим описанием эффективных  размеров изолированного атома является теоретически рассчитанное положение (расстояние от ядра) главного максимума  зарядовой плотности его наружных электронов. Это так называемый орбитальный радиус атома. Периодичность в изменении значений орбитальных атомных радиусов в зависимости от порядкового номера элемента проявляется довольно отчетливо (см. рис. 4), и основные моменты здесь состоят в наличии очень ярко выраженных максимумов, приходящихся на атомы щелочных металлов, и таких же минимумов, отвечающих благородным газам. Уменьшение значений орбитальных атомных радиусов при переходе от щелочного металла к соответствующему (ближайшему) благородному газу носит, за исключением ряда Li—Ne, немонотонный характер, особенно при появлении между щелочным металлом и благородным газом семейств переходных элементов (металлов) и лантаноидов или актиноидов. В больших периодах в семействах d- и f-элементов наблюдается менее резкое уменьшение радиусов, так как заполнение орбиталей электронами происходит в пред- предвнешнем слое. В подгруппах элементов радиусы атомов и однотипных ионов в общем увеличиваются.

6.5 Проявления периодического закона в отношении энергии атомизации

Информация о работе Периодическая система и периодический закон Д.И.Менделеева