Автор работы: Пользователь скрыл имя, 05 Октября 2013 в 13:56, курсовая работа
Компания Saint Gobain, предлагает пожаростойкое стекло «Файветар» толщиной 5 мм, которое является самым тонким и экономичным стеклом, специально созданным для использования внутри здания там, где 30-минутная устойчивость к повышенным температурам соответствует нормам пожарной безопасности. «Файветар» является монолитным стеклом с механической прочностью, возможным для использования в дверях и перегородках в местах, где интенсивное движение людей должно быть защищено.
Одним из видов продукции компании SHOTT, занимающейся производством всех видов стекла, – огнестойкое стекло «Пиран», которое немецкая компания позиционирует как самое тонкое стекло в мире. По информации специалистов компании, такое стекло толщиной 5 мм можно применять в тех случаях, где огнестойкость строительных конструкций должна составлять от 30 до 60 мин.
Введение
1. Технологический раздел
Исследовательская часть
Технологическая часть
2. Раздел «Безопасность проекта»
3. Раздел «Экологичность проекта»
4. Автоматика
5. Организационно-экономический раздел
Заключение
Список использованной литературы
Таблица 1.6. Исследуемые составы
Состав |
ЛИМ |
ФК |
Образец |
Содержание гель-фракции, % |
Содержание гель-фракции, % через 40 дней |
50% ГМА + 50% ТХЭФ |
1 |
1 |
Эластичный |
57 |
59,1 |
3 |
Твердый |
- |
- | ||
5 |
Твердый, желтый |
- |
- | ||
9 |
Твердый, желтый |
68 |
- | ||
2 |
1 |
Эластичный |
48 |
58,6 | |
4 |
Твердый |
||||
3 |
1 |
Эластичный |
57,2 |
- | |
2 |
Эластичный |
60 |
73,9 | ||
3 |
Эластичный |
61 |
64,5 | ||
4 |
Твердый |
62 |
- | ||
5 |
Твердый |
64,7 |
- | ||
41ГМА+41ТХЭФ |
15 |
3 |
твердый |
64 |
- |
57ГМА+37ТХЭФ |
3 |
3 |
Эластичный |
73,2 |
- |
66ГМА+28ТХЭФ |
Твердый, непрозрачн. |
- |
- | ||
37ГМА+57ТХЭФ |
Твердый |
53,7 |
- | ||
66ГМА+28ТХЭФ |
Не полимеризуется |
- |
- |
Как было уже замечено, что при увеличении количества ФК образцы приобретают твердость, а увеличение ЛИМа придает им эластичность, что и необходимо для органического стекла, в котором должны сочетаться жесткость и эластичность, но также обеспечивать необходимые прочностные характеристики. Поэтому для дальнейших исследований выбран состав 41ГМА+41ТХЭФ+15ЛИМ+3ФК, так как он обладает оптимальными свойствами для органического стекла.
В составе 41ГМА+41ТХЭФ+15ЛИМ+3ФК+0,4 ин варьировали количество инициатора от 0,4 до 3%. С увеличением количества фотоинициатора содержание нерастворимой гель-фракции снижается, образцы обретали желтоватый оттенок и имели большое количество воздушных включений. Возможно, это связано с увеличением скорости полимеризации, вследствие чего возрастает вязкость композиции, и движение макромолекул затрудняется, происходит обрыв цепи.
Рис. 1.9 Зависимость содержания нерастворимой гель-фракции от количества фотоинициатора для состава 41ГМА+41ТХЭФ+15ЛИМ+3ФК
Для состава 41ГМА+41ТХЭФ+15ЛИМ+3ФК+0,4 ин была определена зависимость содержания нерастворимой гель-фракции от времени полимеризации. Как видно из графика с увеличением времени полимеризации до 40 мин содержание гель-фракции увеличивается, а после достижения 40 мин снижается.
Рис. 1.10 Зависимость содержания нерастворимой гель-фракции от времени полимеризации состава 41ГМА+41ТХЭФ+15ЛИМ+3ФК
Для состава 41ГМА+41ТХЭФ+15ЛИМ+3ФК+0,4 ин была определена зависимость вязкости состава от времени его приготовления. Из графика рис. 1.11 можно сделать вывод, что с течением времени вязкость раствора увеличивается.
Рис. 1.11 Зависимость вязкости от времени приготовления состава
Составы не поддерживают горение на воздухе и имеет невысокие потери массы, это позволяет отнести его к классу трудногорючих материалов. Кислородный индекс исследуемого состава 30% объем.
1.1.6 Выводы и практические рекомендации
1. В результате проведенной работы исследованы свойства исходных компонентов, используемых в составе композиции для органического стекла. Определен механизм полимеризации ГМА. Показано, что полимеризация ГМА происходит с раскрытием двойных связей и эпоксидного кольца с образованием трехмерной структуры. Выход гель-фракции составляет 90%. Предложена схема полимеризации.
2. Оценена методом
ТГА устойчивость исходных
3. Установлен анализом
данных ИКС механизм
4. Осуществлен выбор
времени полимеризации для
5. Исследована зависимость внешнего вида образцов и содержания гель-фракции от состава композиции.
6. Выбран состав 41ГМА+41ТХЭФ+
1.2 Технологическая часть
1.2.1 Характеристика сырья, материалов и готовой продукции
Таблица 1.7. Характеристика сырья, материалов и готовой продукции
№ п/п |
Материалы, свойства |
ГОСТ, ТУ |
Ед.изм |
Показатели свойств |
1 |
2 |
3 |
4 |
5 |
1 |
ГМА |
ТУ 2435–331–0584–2324–96 |
||
Внешний вид |
бесцветная прозрачная жидкость | |||
Содержание основного вещества |
||||
Плотность |
г/ см3 |
1,0726 | ||
Молекулярная масса |
142,16 | |||
Температура плавления |
°C |
-65 | ||
вязкость |
мПа*с |
2,75 | ||
Растворимость в воде |
%, |
2,75 | ||
Температура воспламенения |
°C |
370 | ||
Показатель преломления |
1,4505 | |||
Температура вспышки |
°C |
88 | ||
2 |
ТХЭФ |
ТУ 2494 – 319 – 0576344 |
||
Внешний вид |
бесцветная жидкость | |||
Содержит: Cl- |
%масс |
37,5 | ||
P- |
%масс |
11,3 | ||
Воды |
%масс |
0,07 |
1.2.2 Описание технологического процесса
Технологический процесс производства органического стекла является периодическим и включает следующие стадии:
1. Входной контроль материалов
2. Обработка стеклянных листов.
3. Сборка стеклопакета
4. Подготовка компонентов и установки полимеризации
5. Полимеризация
6. Контроль, хранение и упаковка изделия.
Технологическая схема представлена на рис. 1.12.
При входном контроле материалов по сопроводительной документации проверяют срок годности компонентов заливочного состава. Также проверяют соответствие всем требованиям партии трубки ПВХ и двухсторонней клеящей ленты.
Для изготовления органического стекла применяют отполированное с обеих сторон листовое стекло высшего качества. Стекло проверяют на наличие трещин. Силикатные стекла, поступающие в производство, обязательно подвергают обработке в моечно-сушильном конвейере, сначала круглыми капроновыми щетками, смоченными 1%-ным раствором соды, после чего ополаскивают под душем – для очистки и обезжиривания.
Пройдя через моечную зону, стёкла оказываются в сушильной зоне, где высушиваются идущим навстречу тёплым воздухом. После чего из них изготавливают полимеризационные формы.
При изготовлении форм должна соблюдаться абсолютная чистота. Поэтому работа должна проводиться в условиях полного отсутствия пыли. Рабочие помещения следует оборудовать воздухоочистительной установкой с кондиционным аппаратом и поддерживать в них небольшое избыточное давление воздуха. Затем вымытое стекло обрабатывают раствором антиадгезива, в качестве которого используется полиэтиленсилоксановая жидкость.
Обработанное стекло укладывают на ложемент для сборки стекла, затем устанавливают с зазором до 3 мм внешнее стекло и по периметру вводят эластичную герметизирующую прокладку), а в точке сжатия стекла защемляют калибром. Расстояние между силикатными стеклами определяет толщину листов органического стекла. Таким образом, постепенно вводя трубку и устанавливая прозрачные калибры, герметизируют стеклопакет, оставляя открытой зону подачи смеси.
Транспортировка исходных продуктов осуществляется в закрытых герметичных емкостях. Выгрузка ГМА, ТХЭФ, H3PO4 производится в герметичные емкости и с помощью весовых мерных дозаторов, компоненты подают в смеситель. Ввиду малого количества инициатора дозирование производится вручную. Навеска определяется с помощью электронных весов.
Соотношения выбирают в зависимости от сорта получаемого оргстекла. Ниже приведены соотношения компонентов при получении прозрачного негорючего органического стекла ч.:
ГМА……………….…41 H3PO4 …………….…3
ТХЭФ…………….…41 ЛИМ……………….…….15
Фотоинициатор……. 0,4
Компоненты состава перемешивают в смесителе в течение 1 часа при температуре 20±5°С, затем вводят H3PO4 и перемешивают ещё 10–20 минут. По окончании гомогенизации с целью обезвоздушивания смесь вакуумируют в том же смесителе. Вакуум создается компрессором, при этом воздух предварительно проходит очистку на каплеуловителе, после чего газо-воздушная смесь поступает на доочистку в термокаталитическую установку. Вакуумирование проводят в течение 10 минут.
После вакуумирования весовым мерным дозатором отмеряются точные дозы смеси, поступающие в формы. Для чего форму поворачивают, устанавливают воронку 10 и выливают определённую порцию композиции. После опорожнения воронки, её снимают, герметизируют зону подачи смеси ПВХ-трубкой и переводят заполненный стеклопакет в горизонтальное положение и одновременно с помощью иглы удаляют воздушные пузыри.
После этого деталь снимают с ложемента сборки – заливки и устанавливают на профилированную форму, которая поступает на конвейер фотоотверждения, где изделие отверждается, а затем выходит из зоны облучения. Время засветки выбирают исходя из времени полимеризации состава. Затем стеклопакет выходит из зоны облучения. Калибры снимают, изделие извлекают из формы, проверяют габаритные размеры полученного изделия с помощью рулетки, контролируют и упаковывают.
Контроль качества негорючего органического стекла основан, прежде всего, на испытании термостойкости, способности выдерживать резкие перепады температур, определении физико-механических свойств. Определяются устойчивость при высоких температурах, светопроницаемость, светостойкость, огнестойкость, оптическое искажение, предел прочности, твердость по Бринеллю.
Заготовки следует хранить таким образом, чтобы не ухудшать их качество. Обычно изделия хранят в стеллажах с вертикально расположенными ячейками шириной до 30 см.
1.2.3 Основные
параметры технологического
Таблица 1.8. Параметры технологического процесса производства органического стекла
Параметры |
Значения |
Время гомогенизации, мин |
80 |
Время полимеризации, мин |
60 |
Температура,°С |
20±5 |
Давление, мм. рт. ст. |
740 – 760 |
Давление вакуумирования, мм. рт. ст |
340 – 400 |