Автор работы: Пользователь скрыл имя, 05 Октября 2013 в 13:56, курсовая работа
Компания Saint Gobain, предлагает пожаростойкое стекло «Файветар» толщиной 5 мм, которое является самым тонким и экономичным стеклом, специально созданным для использования внутри здания там, где 30-минутная устойчивость к повышенным температурам соответствует нормам пожарной безопасности. «Файветар» является монолитным стеклом с механической прочностью, возможным для использования в дверях и перегородках в местах, где интенсивное движение людей должно быть защищено.
Одним из видов продукции компании SHOTT, занимающейся производством всех видов стекла, – огнестойкое стекло «Пиран», которое немецкая компания позиционирует как самое тонкое стекло в мире. По информации специалистов компании, такое стекло толщиной 5 мм можно применять в тех случаях, где огнестойкость строительных конструкций должна составлять от 30 до 60 мин.
Введение
1. Технологический раздел
Исследовательская часть
Технологическая часть
2. Раздел «Безопасность проекта»
3. Раздел «Экологичность проекта»
4. Автоматика
5. Организационно-экономический раздел
Заключение
Список использованной литературы
Далее осуществляют зажигание образцов. Для этого подводят самую нижнюю часть пламени горелки к верхней горизонтальной поверхности образца, медленно перемещая так, чтобы пламя покрывало ее полностью и не касалось вертикальных поверхностей или граней образца. Длительность воздействия пламени на образец составляет 30 секунд с короткими перерывами через каждые 5 секунд. Образец считается воспламененным, если после отвода горелки через 5 секунд вся его поверхность горит.
После воспламенения образца включают секундомер и наблюдают за распространением пламени. Если горение прекращается и не возобновляется в течение 1 секунды, то выключив секундомер, определяют время горения и длину сгоревшей части образца. По ходу испытания отмечают процессы, сопровождающие горение: падение частиц, обугливание, неравномерное горение, тление. Гасят и вынимают образец из реакционной камеры.
Кислородный индекс в % вычисляют по формуле:
КИ = {/ +}*100%,
Где – минимальная концентрация кислорода в кислородно-азотной смеси, необходимая для горения образца.
Метод термогравиметрического анализа
Испытания проводят в соответствии с ГОСТ 21553 – 76. Термогравиметрия – это динамический метод непрерывного взвешивания образца в зависимости от температуры при постоянной скорости нагрева. Деривативная термогравиметрия представляет собой метод, в котором получают первую производную изменения веса по времени как функцию температуры при постоянной скорости нагрева.
Изменение массы, скорости
изменения массы и величин
тепловых эффектов при нагреве образцов
волокон изучалось методом
Условия эксперимента: навеска – 200 мг; среда – воздух; интервал нагрева – до 1000°С; скорость нагрева – 10°С/мин.
Относительная ошибка не превышает 1%.
Энергия активации термодеструкции материалов определялась методом Г.О. Пилояна по кривой ДТА по формуле:
,
где Е – энергия активации, Дж/моль;
R – универсальная газовая постоянная, Дж/град*моль;
Т – температура, К;
С' – константа.
Уравнение можно представить в виде:
,
,
где 2,3 – модуль перевода натурального логарифма в десятичный.
Это уравнение можно представить в виде Y=а·Х+b, где а – угловой коэффициент, который равен тангенсу угла наклона прямой к оси абсцисс.
Графически энергию активации определяют по тангенсу угла наклона прямой построенной в координатах lg D l = f, где D l – длина отрезка между нулевой линией и кривой ДТА.
Отсюда
Метод инфракрасной спектроскопии
Взаимодействие компонентов композиции изучает посредством метода инфракрасной спектроскопии, выполняемой на приборе «Spekord» с приставкой «MJR-4» с призмой КRS – 5 с 18 отражениями. Образцы готовили в виде таблеток, полученных прессованием при давлении 2 МПа из смеси, содержащей 4 мг образца и 200 мг бромистого калия или в виде пасты, помещенной между двумя пластинами из хлористого натрия или бромистого калия. Исследования проводили в области длин волн 400 – 4000 см-1, ширина щели равна 3.
1.1.5 Результаты эксперимента и их обсуждение
Органические стекла находят широкое применение в различных областях промышленности для остекления автомобильного, железнодорожного, авиационного транспорта, в приборной технике и т.д. Такие материалы прочны, эластичны, травмобезопасны, характеризуются высокой светопрозрачностью. В производстве органических стекол используют полиметакрилаты, полиакрилаты, полистирол, поликарбонаты и другие полимеры. Существенным недостатком является высокая горючесть, что ограничивает область их применения. В связи с этим разрабатываются новые составы органических стекол, относящихся к классу трудносгораемых. Для снижения горючести используются различные модифицирующие добавки, содержащие в составе фосфор, галогены, азот.
Выбор компонентов полимерных заливочных составов, обеспечивающих создание органических стекол с пониженной горючестью обусловлен предъявлением комплекса требований к полимерному составу: способности к сополимеризации; текучести, обеспечивающей заполнение форм; прозрачности на уровне силикатных стекол; способности к карбонизации, обеспечивающей формирование кокса с необходимыми теплозащитными свойствами. Составы для органических стекол должны обладать высоким комплексом физико-механических свойств.
В связи с предъявляемым комплексом требований нами в качестве структурообразующего компонента композиций исследовался ГМА.
Для снижения горючести в составы вводились ЛИМ, ТХЭФ.
Составы, содержащие фотоинициатор, полимеризовали между двумя силикатными стеклами методом УФ-полимеризации при мощности облучения 60 Вт/м2.
Полимеризация ГМА осуществляется по радикальному механизму за счет раскрытия двойных связей, что подтверждается уменьшением интенсивности полосы валентных колебаний связи >C=C<. Разрыв связи >C=C< обеспечивает также участие атома С в межмолекулярной сшивке с образованием трехмерной структуры. Содержание нерастворимой гель-фракции в полимеризате ГМА – 90%. В заполимеризованном ГМА отмечено наличие колебаний связи гидроксильных групп, отсутствующих у незаполимеризованного ГМА, связаных с раскрытием эпоксидного кольца и присоединенного атома водорода, от гидроксила воды, содержащийся в ГМА в количестве 0,5% масс. Это подтверждается отсутствием в заполимеризованном ГМА, колебаний связи эпоксидной группы, имеющейся в незаполимеризованном ГМА при 945 см-1.
ГМА способен к УФ – инициируемой полимеризации. ЛИМ и ТХЭФ в условиях фотоинициируемой полимеризации не полимеризуются.
В связи с тем, что процессам горения предшествуют процессы пиролиза или термолиза при создании материалов пониженной горючести оценено поведение каждого из компонентов при термоокислительной деструкции. При воздействии повышенных температур с применением ТГА.
Из анализа данных термогравиметрии, табл. 1.4 следует, что все компоненты относятся к коксообразующим. Однако ГМА, полимеризующийся под УФ-воздействием имеет большое значение кажущейся энергии активации процесса деструкции.
Таблица 1.4. Параметры процесса пиролиза компонентов
Вещество |
Параметры процесса деструкции |
Потери массы при температуре, ºС |
Еа, кДж/моль | ||||
Тн – Тк, ºС Тmax |
Выход КО при Тк, % |
200 |
300 |
400 |
500 | ||
ГМА |
210 – 345 280 |
23 |
2,5 |
63 |
81 |
83 |
110 |
ЛИМ |
150 – 370 180, 360 |
57 |
20 |
41 |
67 |
90 |
100 |
ТХЭФ |
242 – 350 310 |
23 |
3 |
43 |
83 |
83 |
- |
В ТХЭФ, содержащем хлор, деструкция сопровождается дегидрохлорированием, которое завершается в интервале температур 160–240ºС и потери массы соответствуют содержанию хлора в ТХЭФ – 35% масс. Процесс дегидрохлорирования эндотермический, однако, деструкция сопровождается, по данным ДТА, выделением тепла. Видимо, одновременно с дегидрохлорированием протекают процессы структурирования, это подтверждается образованием коксового остатка. В интервале температур 240–320ºС протекает разложение структурированных структур.
Для получения органических стекол с необходимым комплексом свойств осуществлялось последовательное совмещение компонентов. В органическом стекле должны сочетаться жесткость и эластичность, обеспечивающие необходимые прочностные характеристики. В качестве основного компонента использовался глицидилметакрилат. учитывалось, что ГМА при полиме ризации образует жесткую структуру с невысокими физико-механическими свойствами σ р =17МПа.
Для снижения жесткости ГМА использовали введение ТХЭФ – это пластификатор полифункционального действия, который в своем составе содержит хлор и фосфор.
Для оценки взаимодействия компонентов ГЭМА, ТХЭФ и ФК исследовались как незаполимеризованный так и подвергнутый УФ-воздействию составы.
В образце незаполимеризованного состава отмечено наличие пиков валентных колебаний ОН-групп, относящихся к ФК, являющейся катализатором процесса сополимеризации ГЭМА и ТХЭФ. В спектрограмме имеются также пики валентных колебаний связей групп СН3, СН2, СО, ≡Р–О –, ССl, входящих в состав образца.
В спектрограмме полимеризата данного состава существенно увеличился пик валентных колебаний связи ОН-группы и уменьшился пик валентных колебаний связи >С=С<. Появление в спектре заполимеризованного состава колебаний чётных последовательностей n , отсутствующих в незаполимеризованном образце, может свидетельствовать о присоединении молекулы ТХЭФ к ГЭМА по типу «голова к голове».
Анализ спектрограмм позволил предположить, что взаимодействие ГЭМА с ТХЭФ в присутствии ФИ и катализатора, осуществляется в процессе УФ-инициируемой полимеризации по следующей схеме.
Выбор соотношения компонентов и параметров полимеризации проводился по оценке содержания нерастворимой в ацетоне гель-фракции. Для составов, содержащих 49ГМА+49ТХЭФ+1ФК+0,4 ин+ ЛИМа% масс. исследовались зависимости содержания гель-фракции в полимеризате от времени полимеризации. Как видно из графиков, с увеличением времени полимеризации содержание гель-фракции.
При исследовании содержания гель-фракции от времени хранения для состава с 1% содержанием ЛИМа рис. 1.6 кр. 1,2 отмечено снижение количества нерастворимой фракции определенной в полимеризате, через 40 суток после полимеризации. Для образцов, содержащих 2% ЛИМа содержание гель-фракции при хранении возрастает рис. 1.6 кр. 3,4, что может быть связано с недостатком ионного инициатора сополимеризации – ФК.
Сравнительный анализ спектограмм образцов состава 49ГМА+49ТХЭФ+1ФК+1ЛИМ с разным временем полимеризации показал,
Анализ данных термогравиметрии образцов состава 49ГМА+49ТХЭФ+1ФК+1ЛИМ показал, что все образцы относятся к коксообразующим и параметры деструкции мало зависят от времени полимеризации. Однако, следует отметить возрастание термоустойчивости образцов при времени полимеризации 60 мин, что видимо связано с завершенностью процессов структурообразования. Скорости потери массы для всех составов приблизительно одинаковы рис. 1.8.
Таблица 1.5. Изменение параметров процесса деструкции от времени полимеризации состава 49 ГМА+49 ТХЭФ +1 ЛИМ+1ФК+0,4 ин
Время полимеризации, мин |
Параметры процесса деструкции |
Потери массы, при температуре, ºС | ||||||||
, ºС |
, % |
Темературный интервал, ºС |
100 |
200 |
300 |
400 |
500 |
600 |
700 | |
20 |
|
|
100 |
1 |
4 |
55 |
73 |
76 |
82 |
90 |
40 |
|
|
100 |
1 |
3 |
61 |
72 |
76 |
82 |
89 |
60 |
|
|
90 |
1 |
3 |
60 |
74 |
78 |
84 |
93 |
80 |
|
|
170 |
1 |
5 |
65 |
72 |
78 |
82 |
89 |
Так как исследуемые составы не обеспечивают жесткости, необходимой для органического стекла, то в них увеличивали содержание ФК, являющейся катализатором сополимеризации.
При введении ФК в количестве 4–5% масс. образцы приобретали твердость, а при содержании ФК выше 5% масс. на поверхности образцов выделяется жидкость, видимо, полиметафосфорная кислота и образцы имеют желтоватый оттенок.
Также возрастает содержание гель-фракции от времени хранения образца, что свидетельствует о протекании процесса структурирования.
При изменении соотношения компонентов 57ГМА+37ТХЭФ+3ЛИМ+3ФК содержание гель-фракции составило 73,2%, образцы прозрачные и эластичные. При дальнейшем увеличении ГМА и понижении ТХЭФ образцы непрозрачны.
Уменьшение содержания ГМА и увеличение ТХЭФ обеспечивает содержание гель фракции 53,7%, состав 28ГМА+66ТХЭФ+3ЛИМ+3ФК не полимеризуется.