Автор работы: Пользователь скрыл имя, 13 Октября 2013 в 18:02, дипломная работа
Дипломный проект на тему «Проект установки замедленного коксования» посвящен разработке процесса замедленного коксования с целью получения нефтяного кокса и дистиллятных продуктов (бензина, легкого и тяжелого газойлей).
В данном проекте даны основные показатели работы установки замедленного коксования, рассчитан материальный и тепловой балансы, выполнен подробный расчет камеры коксования, разработаны основные приборы автоматического контроля технологического процесса и мероприятия по охране окружающей среды и технике безопасности, а так же определены технико-экономические показатели.
ВВЕДЕНИЕ ……………….…………………………………….……………….8
1 Литературный обзор…………………………...……………………………...9
1.1 Термические процессы переработки нефтяного сырья………………..…9
1.2 Установки замедленного коксования………………………………..……15
1.3 Особенности технологии производства игольчатого кокса………….....21
2 Технологический раздел………..……………………………………..…….23
2.1 Выбор метода производства и места строительства …..……..……..…..23
2.2 Назначение и краткая характеристика процесса.………………………..24
2.3 Характеристика сырья, готовой продукции и вспомогательных материалов…………………………………………………………….……. 25
3 Расчетный раздел…………..………………………………………….………27
3.1 Материальный баланс процесса………………………………………..…..27
3.2 Материальный баланс основного аппарата…………….………………….29
3.3 Тепловой баланс камеры коксования……………………..………………..29
3.4 Основные параметры камеры коксования………………………..………..30
4 Подбор основного и вспомогательного оборудования……………………..37
4.1 Реакционная камера…..……………………………………………………..37
4.2 Ректификационный аппарат…………………………………………..……39
4.3 Трубчатые печи…………………………………………………………..…40
5 Раздел автоматизации…………………………………………………………42
5.1 Автоматический контроль технологического процесса………………….42
5.2 Основные приборы контроля……………………………………………….44
6 Генеральный план завода……………………..……………………………….53
7 Техника безопасности, охрана труда и противопожарные мероприятия....56
7.1 Характеристика вредных и опасных производственных факторов……...56
7.2 Метеорологические условия………………………………………………..58
7.3 Характеристика опасности установки замедленного коксования………..60
7.4 Техника безопасности…………………………………………………..…..61
7.5 Пожарная безопасность…………………………………………….………67
7.6 Производственное освещение……………………………………….…….69
7.7 Шум и вибрация…………………………………………………………….70
7.8 Электробезопасность…………………………………………………….…71
7.9 Разработка защитных мероприятий от ударов молний……………….…74
8 Охрана окружающей среды………………………………….…….………..76
9 Технико-экономические показатели процесса…..…………….……….......85
ЗАКЛЮЧЕНИЕ…………………………………………………………………95
СПИСОК ЛИТЕРАТУРЫ………………………………………….……..……96
A1A· ¾¾®M + A1A2·
A1A2· + A ¾¾®A1A2A· + и т.д.
где – А – молекула асфальтена; R·, A1·, A1A·, A1A2·, A1A2A· – радикалы цепи; М – молекула с небольшой молекулярной массой, выделяющаяся в газовую фазу.
Уплотнение аренов протекают по цепному механизму. Например:
·С6Н5 + С6Н6 ¾¾® С6Н5–С6Н5 + Н·
фенил бензол дифенил
С6Н6 + Н· ¾¾® ·С6Н5 + Н2
Образовавшиеся свободные радикалы Н· и фенильные взаимодействуют с молекулами ароматических углеводородов (бензола, нафталина, антрацена и т.п.) с образованием других ароматических радикалов, рекомбинация которых приводит к накоплению конденсированных молекул.
Постепенное увеличение
молекулярной массы, повышение содержания
углерода и потерю водорода в результате
конденсации ароматических стру
Эти реакции приводят к образованию кокса.
Ниже кратко рассмотрим исходные сырье, условия протекания и полученные продукты процессов коксования.
Назначение процесса коксования – получение нефтяного кокса и дистиллата широкого фракционного состава.
Нефтяной кокс используется в качестве восстановителя в химической технологии для приготовления анодов в металлургии, для получения карбидов Be2C, TiC, в авиационной и ракетной технике, в производстве абразивов и огнеупоров (SiC, B4C, TiC), в ядерной энергетике (B4C, ZrC), а также в виде сырья для получения конструкционных углеграфитовых материалов (для сооружения и футеровки химической аппаратуры и оборудования). Чистый углерод используется в качестве замедлителя нейтронов в атомных реакторах.
Нефтяной кокс представляет собой твердое вещество плотностью 1,4-1,5 г/см3 с высоким содержанием углерода. Отношение С:Н в коксе составляет 1,1-4. Значительная часть атомов углерода в коксе находится в конденсированных ареновых структурах.
Сырье – отбензиненные нефти, мазуты, полугудроны, гудроны, крекинг-остатки, тяжелые газойли каталитического крекинга, смолы пиролиза, природные асфальты и остатки масляного производства.
Полунепрерывный процесс осуществляется на установках замедленного коксования – температура процесса 505-515 оС; давлении 0,2-0,3 МПа.
Получаемые продукты – нефтяной кокс, газ, бензин, средние и тяжелые коксовые дистилляты.
Выход и качество получаемых продуктов зависят от химического и фракционного состава сырья и условий коксования. Выход кокса из остатков первичной переработки нефти 15-25%, из вторичных продуктов 30-35%.
Коксование тяжелых нефтяных остатков служит одним из наиболее экономичных способов превращения их в дистиллятное сырье.
Газы по составу близки к газам термического крекинга и могут служить сырьем для нефтехимических производств.
Бензин имеет низкое качество (0.ч.=60-67; содержание серы 1-2%); его необходимо облагораживать (подвергать гидроочистке и каталитическому риформингу). Большое содержание в бензинах коксования непредельных углеводородов (37-60%) делает его ценным сырьем для нефтехимических производств.
1.2
Установки замедленного
Первые промышленные установки замедленного коксования были построены за рубежом в середине 30-х гг. и предназначались в основном для получения дистиллятных продуктов [1]. Кокс являлся побочным продуктом и использовался в качестве топлива. Однако в связи с развитием электрометаллургии и совершенствованием технологии коксования кокс стал ценным целевым продуктом нефтепереработки. Всевозрастающие потребности в нефтяном коксе обусловили непрерывное увеличение объемов его производства путем строительства новых установок замедленного коксования (УЗК). В нашей стране УЗК эксплуатируются с 1955 г. (УЗК на Ново-Уфимском НПЗ) мощностью 300, 600 и 1500 тыс. т/г по сырью. Средний выход кокса на отечественных УЗК ныне составляем около 20% масс. на сырье (в США = 30,7 % масс), в то время как на некоторых передовых НПЗ, например на УЗК НУНПЗ, выход кокса значительно выше (30,9 %масс). Низкий показатель по выходу кокса на многих УЗК обусловливается низкой коксуемостью перерабатываемого сырья, поскольку на коксование направляется преимущественно гудрон с низкой температурой начала кипения (< 5000C), что с вязано с неудовлетворительной работой вакуумных колонн AВT, a также тем, что часто из-за нехватки сырья в переработку вовлекается значительное количество мазута.
Кроме УЗК используется установки коксования в псевдоожиженном слое порошкообразного кокса, например процесс флексикокинг (1976 года) [3].
Замедленное коксование нефтяных остатков протекает при температурах 490-515 0С и давлении 0,2-0,3 МПа со временем нагрева сырья в реакционной зоне трубчатой печи около 2 мин. Сырье нагревается сначала в конвекционных трубах трубчатой печи до 270-3000C и потом подается на верх промывочной секции ректификационной колонны для дополнительного нагрева зa счет контакта с более горячими паром, газом, продуктами реакции, поступившими из коксовых камер под нижнюю каскадную тарелку промывочной секции ректификационной колонны. С низа промывочной секции колонны насосом отводится поток жидкости с температурой 3900C, состоящий из сырья и рециркулята - сконденсировавшихся паров продуктов реакции, для дальнейшего нагрева в радиантных трубах трубчатой печи до 490-515°С. Реакция коксования начинается в трубчатой печи и заканчивается в коксовой камере в виде глубокого разложения сырья и рециркулята с образованием кокса и более легких, чем сырье, газообразных и жидких углеводородов, отводимых на разделение в ректификационную колонну. Верхними продуктами являются несконденсировавшиеся газы и бензиновая фракция, с «глухой» тарелки колонны отводят также другой продукт – керосино-газойлевую фракцию. Выход этих продуктов до 70 % мас. на сырье, выход кокса 15-35% масс. на сырье.
На установке имеется 2-3 (до 4-6) кокосовые камеры. Пока одна камера наполняется коксующей массой, в другой происходит коксование, а из третьей камеры происходит выгрузка кокса. График работы реакционных камер обеспечивает выполнение следующих операций: коксование 15-30 ч. переключение потоков 0,5 ч., пропаривание 6-7 ч., охлаждение 2-3 ч., дренаж воды и открытие люков 2-3 ч, выгрузка кокса 3-6 ч, осмотр камер, закрытие люков, опрессовка и разогрев 10-11 ч, общее время операций 48-60 ч. Выгрузку кокса из камер производят с помощью гидравлического резака. Резка кокса осуществляется струей воды, выходящей из сопел резака под давлением 16-25 МПа. Кокс в виде кусков разного размера отделяется от воды, дробится на куски размером не более 200мм, сортируется на фракции 3-25 мм и 25-200мм и транспортируется на склад или установку прокаливания. Высота коксовых камер до 28 м, диаметр 5-9 м. Коксовые камеры устанавливаются на постамент высотой до 20м, тогда отметка верхнего люка-горловины коксовой камеры доходит до 45 м, вертикальный габарит установки до 90 м. Над коксовыми камерами располагается металлическая конструкция, на которой крепится талевая система и вертлюг для подвески гидрорезака, имеется также ротор, штанга квадратного сечения и лебедка. Гидрорезак имеет три бурильных сопла, направление вниз, из которых водяные струи под высоким давлением разбуривают в слое кокса центральный ствол (скважину) диаметром 0,6-1,8 м. Два горизонтально расположенных сопла гидрорезака струей воды разрушают слой кокса на куски. Производительность установок замедленного коксования от 0,3-0,6 млн. т/год по сырью. На установках имеется блок разделительной аппаратуры (фракционирующей абсорбер, ректификационная колонна и др.) для выделения сухого газа и разделения получаемых жидкий фракций.
Прокаливание нефтяного кокса проводится с целью придания ему высокой плотности, низкого электрического сопротивления, малой реакционной способности и достаточной механической прочности. Прокаливание кокса осуществляется в барабанных печах и в прокалочных печах с вращающимся подом при нагреве кокса 1200-14000С в токе горячих дымовых газов в течение около 1,5 ч. Начальная влажность кокса 12-18 % мас., снижается до 0,3-0,5 % масс., зольность прокаленного кокса не должна превышать 0,3-0,6 мас.%, содержание серы не более 1,0-1,5 мас.%, действительная плотность не менее 850 кг/м. Установка прокаливания может комбинироваться с установкой получения кокса. На начало 2001 г. мощности установок (в млн. т./год) термического крекинга и висбрекинга в мире были равны 214,5 и коксование 222,4; в том числе в Северной Америке соответственно 17, 1 и 127,2; в Западной Европе – 91,2 и 19,5; в России и СНГ – 19,5 и 12, 7 [2]
Название
«замедленное» в
Поскольку сырье
представляет собой тяжелый остаток,
богатый смолами и асфальтенами
(то есть коксогенными компонентами), имеется
большая опасность, что при такой
высокой температуре оно
Процесс замедленного
коксования является непрерывным по
подаче сырья на коксование и по
выходу газообразных и дистиллятных
продуктов, но периодическим по выгрузке
кокса из камер. Установка замедленного
коксования включают следующие 2 отделения:
нагревательно-реакционно-
В зависимости от производительности УЗК различаются количеством коксовых камер, количеством и мощностью поколения приняты печи шатрового типа 2 или 3 камеры коксования с диаметром 4,6 м и высотой 27 м, работающие поочередно по одноблочному варианту. УЗК последующих поколений являются двухблочными четырехкамерными, работающими попарно. На современных модернизированных УЗК используются печи объемно-настильного и вертикально-факельного пламени камеры большего диаметра (5,5-7,0 м; высота – 27-30 м). В них предусмотрены высокая степень механизации трудоемких работ и автоматизации процесса.
Ниже приводим типичный цикл работы камер (в ч).
Заполнение камер сырьем и коксование 24,0
Отключение камеры 0,5
Пропаривание 2,5
Охлаждение водой кокса и слив воды 4,0
Гидравлическая выгрузка кокса 5,0
Закрытие люков и испытание паров 2,0
Разогрев камеры парами нефтепродуктов 7,0
Резервное время ≈3,0
ИТОГО: 48,0
Подготовительные операции УЗК занимают 24-34 ч. В отличие от непрерывных процессов нефтехимические превращения осуществляются в нестационарном режиме с периодическими колебаниями параметров процесса, прежде всего температуры и времени. Продолжительность термолиза в жидкой фазе изменяется от максимального значения с начала заполнения камеры до минимального к моменту переключения на подготовительный цикл. На характер изменения температурного режима по высоте и сечению камеры оказывает влияние эндотермичность суммарного процесса термолиза, а также величина потерь в окружающую среду. Это обстоятельство обуславливает непостоянство качества продуктов по времени, в том числе кокса по высоте камеры. Так, верхний слой кокса характеризуется высокой пористостью, низкой механической прочностью и высоким содержанием летучих веществ (то есть кокс недококсован). Установлено, что наиболее прочный кокс с низким содержанием летучих находится в середине по высоте и сечению камеры.
В модернизованных
Рассмотрим технологический режим установки.
Температура входа сырья в камеры, 0С 490-510
Температура выхода паров из камеры, 0С 440-460
Давление в коксовой камере, МПа 0,18-0,4
Коэффициент рециркуляции 1,2-1,6
Таблица 1.1
Выход продуктов при замедленном коксовании различных видов сырья
Показатель |
Вых.сырья, % от нефти |
Качество сырья коксования |
Выход на сырье, % масс. | |||||||||
Плотность, кг/м3 |
Коксуемость, % |
Вязкость условная при 1000С, ВУ |
Разгонка по Богданову, перегоняется, % |
Газ и потери |
Бензин |
Коксовый дистиллят |
кокс | |||||
при 3000С |
при 3500С |
при 4000С |
При 5000С | |||||||||
Мазут |
46 |
950 |
9 |
5,2 |
10 |
21 |
- |
- |
9,5 |
7,5 |
68 |
15 |
Полугудрон |
40 |
965 |
13 |
6 |
8,5 |
13 |
16 |
46 |
10 |
12 |
56 |
22 |
Гудрон |
33 |
990 |
16 |
9 |
1,5 |
5 |
15 |
36 |
11 |
16 |
49 |
24 |
Крекинг-остаток |
28 |
1012 |
20 |
7,3 |
8 |
13 |
23 |
56 |
13,2 |
6,8 |
49 |
31 |
Крекинг-остаток утяжеленный |
27 |
1024 |
23 |
8,5 |
5 |
11 |
25 |
45 |
11 |
7 |
47 |
36 |