Магнитные материалы

Автор работы: Пользователь скрыл имя, 18 Ноября 2012 в 18:56, реферат

Краткое описание

Магнитные материалы в электро и радиосвязи играют столь же важную роль, как проводниковые и диэлектрические материалы. В электрических машинах, трансформаторах, дросселях, электрорадиоаппаратуре и измерительных приборах всегда в том или ином виде используют магнитные материалы: в качестве магнитопровода, в виде постоянных магнитов или для экранирования магнитных полей.

Прикрепленные файлы: 1 файл

реф химия - копия.doc

— 64.00 Кб (Скачать документ)

Улучшенные магнитные характеристики холоднокатанных сталей наблюдаются  только при совпадении направления  магнитного потока с напрвлением пркатки. В противном случае свойства горячекатанных сталей выше.

Таблица 1.

 

μн 

μм 

Нс, А/м 

Горячекатанная 

300 - 400

6000 - 8000

31 – 33

холоднокатанная

600 - 900

2000 - 35000

9.5 – 14


Стали применяют в  менее ответственных узлах РЭА.

 Металлические магнитно-твердые материалы

По составу, состоянию  и способу получения магнитно-твердые  материалы подразделяются на:

1. легированные стали, закаливаемые на мартенсит;

2. литые магнитно-твердые сплавы;

3. магниты из порошков;

4. магнитно-твердые ферриты;

5. пластически деформируемые сплавы и магнитные ленты.

Характеристиками материалов для постоянных магнитов служат коэрцитивная сила, остаточная индукция и максимальная энергия, отдаваемая магнитом во внешнее  пространство. Магнитная проницаемость материалов для постоянных магнитов ниже, чем МММ, причем чем выше коэрцитивная сила, тем меньше магнитная проницаемость.

 Легированные стали, закаливаемые на мартенсит

Данные стали являются наиболее простым и доступным  материалом для постоянных магнитов. Они легируются вольфрамом, хромом, молибденом и кобальтом. Величина Wм для мартенситных сталей составляет 1 –4 кДж/м3. В настоящее время мартенситные стали имеют ограниченное применение из-за невысоких магнитных свойств, но полностью от них не отказываются, т.к. они дешевы и допускают механическую обработку на металлорежущих станках.

Литые магнитно-твердые  сплавы

Большую магнитную энергию  имеют тройные сплавы Al-Ni-Fe, которые  раньше называли сплавами альни. При добавлении кобальта или кремния в эти сплавы их магнитные свойства повышаются. Недостатком этих сплавов является трудность изготовления из них изделий точных размеров вследствие хрупкости и твердости их, допускающих обработку только путем шлифовки.

 Магниты из порошков

Необходимость получения особенно мелких изделий со строго выдержанными размерами обусловила привлечение методов порошковой металлургии для получения постоянных магнитов. При этом различают металлокерамические магниты и магниты из зерен порошка, скрепленных тем или иным связующим (металлопластические магниты).

 Пластически деформируемые сплавы и магнитные ленты

К таким сплавам относятся  викаллой, кунифе, кунико и некоторые  другие. Основные представления об этих сплавах приведены в табл.2.

Таблица 2.

Марка сплава

Хим. Состав %, ост. Fe

Вr, Тл

Нс,  
кА/м

Wм, 
КДж/м3

Викаллой I

51-54 Со  
10-11.5 V

0.9

24

4

Викаллой II

51-54 Со  
11.5-13 V

0.9-0.95

30-28

8-14

Кунифе I

60Cu,20Ni

0.54-0.6

27-28

4-7.4

Кунифе II

50Cu,20Ni 2.5Co

0.73

21

2.8-3.2

Кунико I

50Cu,21Ni, 29Co

0.34

53-57

3.2-4

Кунико II

35Cu,41Co

0.53

36

4


 Ферриты

Это соединения оксида железа Fe2O3 с оксидами других металлов: ZnO, NiO. Ферриты изготавливают из порошкообразной  смеси оксидов этих металлов.

Название ферритов определяется названием одно-, двухвалентного металла, оксид которого входит в состав феррита:

Если ZnO – феррит цинка

NiO – феррит никеля.

Ферриты имеют кубическую кристаллическую  решетку, подобную решетке шпинели, встречающейся в природе: MgO·Al2O3. Большинство соединений указанного типа, как и природный магнитный железняк FeO·Fe2O3, обладает магнитными свойствами. Однако феррит цинка и феррит кадмия являются немагнитными. Исследования показали, что наличие или отсутствие магнитных свойств определяется кристаллической структурой этих материалов, и в частности расположением ионов двухвалентных металлов и железа между ионами кислорода. В случае структуры обычной шпинели, когда в центре кислородных тетраэдров расположены ионы Zn++ или Cd++, магнитные свойства отсутствуют. При структуре так называемой обращенной шпинели, когда в центре кислородных тетраэдров расположены ионы Fe+++, материал обладает магнитными свойствами. Ферриты, в состав которых кроме оксида железа входит только один оксид, называется простым. Химическая формула простого феррита:

MeOxFe2O3 или MeFe2O4

Феррит цинка – ZnFe2O4, феррит никеля– NiFe2O4.

Не все простые ферриты обладают магнитными свойствами. Так CdFe2O4 является немагнитным веществом.

Наилучшими магнитными характеристиками обладают сложные или смешанные ферриты, представляющие твердые растворы одного в другом. В этом случае используются и немагнитные ферриты в сочетании с простыми магнитными ферритами. Общая формула широко распространенных никель-цинковых ферритов имеет следующий вид:

mNiO·Fe2O3 + nZnO·Fe2O3 + pFeO·Fe2O3, (8)

где коэффициенты m, n и p определяют количественные соотношения между  компонентами. Процентный состав компонентов  играет существенную роль в получении  тех или иных магнитных свойств  материала.

Наиболее широко в  РЭА применяют смешанные магнитно-мягкие ферриты: никель-цинковые, марганец-цинковые и литий-цинковые.

Достоинства ферритов – стабильность магнитных характеристик в широком  диапазоне частот, малые потери на вихревые токи, малый коэффициент  затухания магнитной волны, а  также простота изготовления ферритовых деталей.

Недостатки всех ферритов – хрупкость  и резко выраженная зависимость  магнитных свойств от температуры  и механических воздействий.

 Магнитодиэлектрики

Это композиционные материалы, состоящие из мелкодисперсных частиц магнитно-мягкого материала, соединенных каким-либо органическим или неорганическим диэлектриком. В качестве мелкодисперсных МММ применяют карбонильное железо, альсиферы и некоторые сорта пермаллоев. В качестве диэлектрика – эпоксидные или бакелитовые смолы, полистирол, жидкое стекло и др.

Назначение диэлектриков не только в том, чтобы соединять частицы  магнитного материала, но и создать  между ними электроизоляционные  прослойки и тем самым повысить электрическое сопротивление магнитодиэлектрика. Это резко снижает потери на вихревые токи и дает возможность работать на частотах 10 – 100 МГц (в зависимости от состава).

Магнитные характеристики магнитодиэлектриков  несколько ниже исходных ферромагнитных наполнителей. Несмотря на это магнитодиэлектрики применяют для изготовления сердечников ВЧ узлов РЭА. Это обусловлено большой стабильностью магнитных характеристик и возможностью изготовления из них сердечников сложной формы. Кроме того, изделия из диэлектриков отличаются высокой чистотой поверхности и точностью размеров.

Лучшие магнитодиэлектрики – с  наполнителями: молибденовым пермаллоем или карбонильным железом.

 

 

 

 

 

 


Информация о работе Магнитные материалы