Комплексонометрия и ёё применение в фармацевтическом анализе

Автор работы: Пользователь скрыл имя, 14 Ноября 2013 в 21:36, реферат

Краткое описание

В фармацевтическом анализе лекарственных средств широко применяются методы титриметрического анализа, которые основаны на измерении объёма раствора реактива известной концентрации, расходуемого для реакции с определяемым веществом. Особое место среди данных методов занимает комплексонометрическое титрование. Чаще всего оно применяется для количественного анализа неорганических лекарственных средств. Таким методом определяются катионы различных металлов, входящих в состав неорганических лекарственных средств.

Содержание

Введение……………………………………………………………………..….3
1. Титриметрический анализ. Общие понятия……………………………4
2. Сущность комплексонометрического титрования…………………….6
3.Приготовление оттитрованного раствора для проведения комплексонометрического титрования…………………………………..….13
Заключение…………………………………………………………...………..17
Литература…………………………………………………………………..…18

Прикрепленные файлы: 1 файл

реферат фармхим.doc

— 156.00 Кб (Скачать документ)

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ  УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО  ОБРАЗОВАНИЯ

 

КУРСКИЙ ГОСУДАРСТВЕННЫЙ  МЕДИЦИНСКИЙ УНИВЕРСИТЕТ МИНИСТЕРСТВА ЗДРАВООХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

 

КАФЕДРА ФАРМАЦЕВТИЧЕСКОЙ, ТОКСИКОЛОГИЧЕСКОЙ И АНАЛИТИЧЕСКОЙ ХИМИИ

Зав. Кафедрой: профессор Л.Е.Сипливая

 

 

Осипенок  Елизавета Владимировна

Студентка 1группы 3курса ф/ф

 

 

 «Комплексонометрия и ёё применение в фармацевтическом анализе»

Реферат по фармацевтической химии

 

 

Преподаватель:

Л.Е. Сипливая

профессор,

зав.кафедрой

 

 

 

 

 

Курск 2013

Оглавление

 

Введение……………………………………………………………………..….3

      1. Титриметрический анализ. Общие понятия……………………………4

      2. Сущность комплексонометрического титрования…………………….6

      3.Приготовление оттитрованного раствора для проведения комплексонометрического титрования…………………………………..….13

Заключение…………………………………………………………...………..17

Литература…………………………………………………………………..…18

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Введение

Фармацевтический  анализ - это наука о химической характеристике и измерении биологически активных веществ на всех этапах производства: от контроля сырья до оценки качества полученного лекарственного вещества, изучения его стабильности, установления сроков годности и стандартизации готовой лекарственной формы. Фармацевтический анализ имеет свои специфические особенности, отличающие его от других видов анализа. Эти особенности заключаются в том, что анализу подвергают вещества различной химической природы: неорганические, элементорганические, радиоактивные, органические соединения от простых алифатических до сложных природных биологически активных веществ. Чрезвычайно широк диапазон концентраций анализируемых веществ. Объектами фармацевтического анализа являются не только индивидуальные лекарственные вещества, но и смеси, содержащие различное число компонентов. Количество лекарственных средств с каждым годом увеличивается. Это вызывает необходимость разработки новых способов анализа.

В фармацевтическом анализе  лекарственных средств широко применяются  методы титриметрического анализа, которые основаны на измерении объёма раствора реактива известной концентрации, расходуемого для реакции с определяемым веществом. Особое место среди данных методов занимает комплексонометрическое титрование. Чаще всего оно применяется для количественного анализа неорганических лекарственных средств. Таким методом определяются катионы различных металлов, входящих в состав неорганических лекарственных средств.

 

 

 

 

1. Титриметрический анализ. Общие понятия.

Титриметрический  анализ (титрование) – методы количественного анализа в аналитической и фармацевтической химии, основанные на измерении объёма раствора реактива известной концентрации, расходуемого для реакции с определяемым веществом. Титрование – процесс определения титра исследуемого вещества. Титрование производят с помощью бюретки, заполненной титрантом до нулевой отметки. Титровать, начиная от других отметок, не рекомендуется, так как шкала бюретки может быть неравномерной. Заполнение бюреток рабочим раствором производят через воронку или с помощью специальных приспособлений, если бюретка полуавтоматическая. Конечную точку титрования (точку эквивалентности) определяют индикаторами или физико-химическими методами (по электропроводности, светопропусканию, потенциалу индикаторного электрода и т. д.). По количеству пошедшего на титрование рабочего раствора рассчитывают результаты анализа

Виды титриметрического анализа

Титриметрический анализ может быть основан на различных  типах химических реакций:

  1. кислотно-основное титрование – реакции нейтрализации;
  2. окислительно-восстановительное титрование (перманганатометрия, иодометрия, хроматометрия) – окислительно-восстановительные реакции;
  3. осадительное титрование (аргентометрия) – реакции, протекающие с образованием малорастворимого соединения, при этом изменяются концентрации осаждаемых ионов в растворе;
  4. комплексонометрическое титрование – реакции, основанные на образовании прочных комплексных соединений ионов металлов с комплексоном (обычно ЭДТА), при этом изменяются концентрации ионов металлов в титруемом растворе.

Типы титрования

Различают прямое, обратное титрование и титрование заместителя.

  1. При прямом титровании к раствору определяемого вещества (аликвоте или навеске, титруемому веществу) добавляют небольшими порциями раствор титранта (рабочий раствор).
  2. При обратном титровании к раствору определяемого вещества добавляют сначала заведомый избыток специального реагента и затем титруют его остаток, не вступивший в реакцию.
  3. При заместительном титровании к раствору определяемого вещества добавляют сначала заведомый избыток специального реагента и затем титруют один из продуктов реакции между анализируемым веществом и добавленным реагентом.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Сущность комплексонометрического титрования

Комплексонометрия (хелатометрия), титриметрический метод анализа, основанный на образовании прочных внутрикомплексных соед. (хелатов) между катионами металлов и комплексонами. наиболее часто применяют иминодиуксусную, нитрилотриуксусную (комплексен I) и этилендиаминтетрауксусную (комплексен II) кислоты, динатриевую соль последней (комплексов III, ЭДТА), а также 1,2-диаминоциклогексантетрауксусную кислоту (комплексен IV). Широкое использование комплексонов II и III обусловлено тем, что их р-ции с катионами металлов протекают полно и в соответствии со стехиометрией, их растворы устойчивы при хранении; эти реагенты доступны и можно получить их препараты высокой чистоты. Конечную точку титрования устанавливают визуально по изменению окраски комплексонометрических индикаторов (металлоиндикаторов), а также потенциометрически, фотометрически, амперометрически или др. методами. При прямом титровании к раствору исследуемого иона небольшими порциями добавляют стандартный раствор комплексона. Таким образом определяют ионы Са, Sr, Ba, Cu, Mg, Mn, Zn и др. При анализе кинетически инертных акваионов применяют обратное титрование: к раствору исследуемого иона добавляют точный объем стандартного раствора комплексона, избыток которого (после нагревания) оттитровывают стандартным раствором к.-л. катиона, взаимодействующего с металлоиндикатором. Так можно определять любые катионы, образующие более устойчивые хелаты с комплексонами (комплексонаты), чем катион титранта; при этом константы устойчивости должны различаться не менее чем на 7 порядков. Метод обратного титрования менее точен, т. к. ошибки возможны при установлении концентраций растворов не только комплексона, но и катиона. Для определения ионов металла, не взаимодействующих с металлоиндикаторами, применяют вытеснительное титрование: к анализируемому раствору прибавляют в избытке точный объем стандартного раствора комплексоната (иногда другие комплексного соединения) иона металла, который образует менее устойчивые комплексные соединения, чем определяемый ион металла. Ионы металла, вытесняющиеся в количестве, эквивалентном кол-ву ионов металла, оттитровывают стандартным раствором комплексона в присутствии металлоиндикатора. Концентрацию ионов, не взаимодействующих с комплексонами, устанавливают косвенным методом. Например, при определении анионов их сначала осаждают стандартным раствором подходящего катиона, избыток которого оттитровывают раствором комплексона.

Комплексоны – неизбирательные реагенты. Селективность К. повышают различными приемами: уменьшением рН среды, выделением (осаждением, экстракцией) определяемого иона, маскированием, изменением степени окисления катиона и т.д. При титровании в кислой среде условная константа устойчивости комплексоната определяемого иона должна быть /108. Титрованию не мешают ионы, условная константа устойчивости комплексонатов которых на 6 и более порядков меньше. Многообразие приемов Комплексонометрия дает возможность определять практически все катионы и анионы. Метод широко применяют при анализе природных и промышленных объектов. По правильности и воспроизводимости комплексонометрия несколько уступает гравиметрии, но значительно превосходит ее по экспрессности. В зависимости от способа индикации конечной точки можно титровать растворы исследуемого вещества с концентрацией 10-4-10-1 М.

Комплексонообразующими  агентами, используемыми в качестве титрантов, являются аминополикарбоновые кислоты, имеющие характерную группу комплексон ІІІ

 

 

Такие соединения способны образовывать хелатные комплексы со многими катионами, в которых  катион связан в кольцевой структуре. Кольцо образовано солевыми связями  катиона с карбоксильными группами, а также координационной связью за счет свободной пары электронов атома азота. Если кольцо пятичленное, то образованный хелат должен иметь высокую стабильность, так что наиболее удобные хелатные титранты это те, которые способны образовывать такие кольца. Это справедливо для этилендиаминтетрауксусной кислоты (ЭДТА), обычно 'применяемой в виде динатриевой соли, известной как едетат динатрия. С большинством металлов, имеющих более одного положительного заряда, ЭДТА образует высокорастворимые в воде комплексы при соотношении   1 : 1. При этом образуется структура, содержащая не менее 3 пятичленных хелатных колец, что обеспечивает высокую устойчивость комплекса. В некоторых случаях, помимо связей, которые образуются за счет свободной пары электронов азота, могут образовываться координационные связи за счет карбонильных кислородов других карбоксильных групп. Так, комплексы, образованные кальцием и трехвалентным алюминием, могут быть представлены формулами:

 

 

Стабильность таких  комплексов в значительной степени  зависит от рН раствора. Большинство  двухвалентных металлов образует комплексы, устойчивые в щелочной среде, но хелаты щелочноземельных металлов 'разрушаются при рН примерно ниже 8; в то же время многие комплексы двухвалентных металлов (например, цинка и свинца) также устойчивы в достаточно кислом растворе. Комплексы трехвалентных металлов благодаря дополнительной стабильности, которая обеспечивается увеличенным числом хелатных колец, часто устойчивы даже в сильнокислых растворах. В щелочных растворах, однако, некоторые из этих металлов в присутствии ЭДТА осаждаются в виде гидроокисей, но не вследствие нестабильности комплекса, а вследствие более мощного влияния низкой растворимости гидроокиси металла. Ниже (табл. 1) приведены константы стабильности хелатов ЭДТА с некоторыми металлами, определенные Шварценбахом для 0,1 моль/ л растворов при

20° C.

 

Таблица 1

Металл

значение K=[HML]/[H][ML]

для 0,1 моль/л растворов при 20°

Na

1,7

Li

2,8

Mg

8,7

Ca

10,6

Fe2+

14,3

Al

15,5

Zn

16,1

Pb

17,2

Hg

20,2

Fe3+

25,1


 

Хелат алюминия образуется медленно, так что этот металл обычно определяют методом обратного титрования.

Определение эквивалентной точки.

Для определения эквивалентной точки при титровании ионов металлов с ЭДТА необходимо использовать подходящий индикатор, который будет реагировать на присутствие свободных ионов металлов в растворе. Таким индикатором, первоначально использованным Шварценбахом для титрования ионов кальция, был мурексид (пурпурат аммония), который в настоящее время очень редко применяется. Наиболее часто из индикаторов используется протравной черный 11 (известный также под другими торговыми названиями). Этот индикатор имеет синюю окраску в аммиачном растворе, но дает красные комплексы со многими ионами металлов в этом растворе. Образуемые при этом комплексы металлов, как правило, менее прочные, чем соответствующие комплексы с ЭДТА, так что титрование с эдетатами легко удаляет металл из его комплекса с индикатором и изменение цвета на чисто синий свидетельствует о полном титровании металла, имеющегося в растворе. Протравной черный 11 часто используют в смеси с метиловым оранжевым; на 'фоне последнего легче обнаруживается конечная точка титрования.

 

 

Используемые индикаторы.

В качестве индикаторов  для комплексонометрических титрований были предложены и использовались многие другие вещества, однако в этой работе приводятся лишь те индикаторы, которые  имеют потенциальную ценность для  фармацевтического анализа. Калькой и кальконкарбоновая кислота дают очень четкий переход окраски от винно-красной к чисто синей при титровании кальция эдетатом динатрия при рН 12–14. Если присутствует магний, то при этом значении рН он осаждается в виде гидроокиси, и если перед прибавлением индикатора добавляют щелочь, то он не мешает определению. Однако все эти индикаторы недостаточно устойчивы в щелочном растворе и поэтому желательно прибавлять их к концу титрования.

Другой широко применяемый  индикатор – ксиленоловый оранжевый; это обычный кислотно-основный индикатор, в который введены группы иминодиуксусной  кислоты, благодаря чему это вещество действует в качестве металл-комплексного индикатора. Этот индикатор дает четкий переход окраски от розово-фиолетовой к желтой в конце титрования алюминия, висмута, свинца, ртути и цинка и может применяться при рН 2–6 в зависимости от титруемого металла.

Металл-индикаторы – это хромофорные органические соединения (красители), образующие с катионами металлов интенсивно окрашенные непрочные комплексные соединения.

Широко применяются  в комплексонометрии следующие  индикаторы: хромоген черный, хром темно-синий, мурексид. Смена окрасок в конечной точке титрования, в частности, индикаторов хромогена черного и хрома темно-синего наблюдается при рН 8-10. Например, в щелочной среде активной формой индикатора хромогена черного является Hind 2-, имеющей синюю окраску. При взаимодействии ионов металла с хромогеном черным в щелочной среде образуется комплекс, окрашенный в винно-красный цвет.

Информация о работе Комплексонометрия и ёё применение в фармацевтическом анализе