Автор работы: Пользователь скрыл имя, 07 Декабря 2012 в 19:03, реферат
Таким образом, скорость реакции образования воды из элементов сильно зависит от внешних условий. Для возможности количественного изучения этой зависимости необходимо, прежде всего уточнить сами единицы измерения. Скорость химической реакции характеризуется изменением концентрации реагирующих веществ (или продуктов реакции) за единицу времени. Концентрацию чаще всего выражают числом молей в литре, время — секундами, минутами и т. д., в зависимости от скорости данной реакции.
4) Обратимость и законы химических превращений.. Согласно предыдущему, лишь те превращения удовлетворяют условию Обратимости, которые могут быть вызваны в системах химического равновесия. Испарение воды в пустоте, замерзание переохлажденной жидкости, взрыв гремучего газа — явления, не удовлетворяющие условиям Обратимости. Возможность приложения формул термодинамики появляется в момент наступления равновесия. Учение об Обратимости реакций решает прежде всего вопросы касательно условий химического равновесия и его нарушения в зависимости от изменения условий. Но и в этом отношении получены весьма важные выводы общего характера, положено основание химической статики. Предсказание Бертоллэ оправдалось: действие химического сродства уже в значительной мере удалось подчинить законам, вполне сходным с законами механики. В механике равновесие системы определяется началом возможных перемещений (см. Лагранж), в химии началом возможных превращений. Явления перехода от данного состояния системы к состоянию равновесия еще не разработаны в столь общей форме. Весьма часто этот переход совершается чрезвычайно медленно, иногда и вовсе не совершается. В этих случаях огромное влияние оказывают контактные действия, класс явлений, хотя уже и весьма многочисленных, но все еще темных. Необходимо принять и в химических явлениях нечто, подобное трению или вязкости. Иногда задержка в наступлении равновесия, химическая вязкость, находится в прямом соотношении с физической вязкостью. Так, густые, вязкие жидкости весьма упорно сохраняют переохлажденное или пересыщенное состояние и даже от прикосновения готового кристалла медленно переходят к состоянию равновесия. В большинстве случаев контактный деятель не оказывает влияния на предел реакции и влияет лишь на время наступления равновесия, причем это влияние сказывается в обеих противоположных реакциях. Таковы влияния оболочки в превращениях газов. Здесь обнаруживается также некоторая связь между контактным действием и физическим свойством твердых тел: наиболее резко выражена способность вызывать химические превращения газов у благородных металлов большого удельного веса и особенно у платины. В некоторых случаях, однако, природа контактного деятеля влияет и на состояние равновесия, определяя его предел. Это имеет место, например, в случаях переохлажденных жидкостей и пересыщенных растворов. Здесь прикосновение готового кристалла не только неизбежно вызывает наступление равновесия, но и определяет его условия. В пересыщенном растворе глауберовой соли можно вызвать кристаллизацию или Na 2SO4, или Na 2SO4 + 7H2 O, или Na 2SO4 + 10H2 O, причем, после наступления равновесия раствор будет содержать при одной и той же температуре разные количества Na 2SO4, смотря по тому, с которым из указанных твердых состояний этой соли он будет находиться в прикосновении. Расплавленная сера, будучи переохлаждена, может выделять или призматические, или октаэдрические кристаллы, смотря по тому, с которой из названных разностей она была приведена в прикосновение, причем устанавливается температура или 121°, или 114°. Все подобные случаи равновесий подчиняются правилу поверхностей, по которому в неоднородной среде равновесие определяется не абсолютными величинами масс действующих тел, а лишь состоянием их у поверхности соприкосновения двух находящихся между собой в равновесии частей системы (фаз, по Гиббсу). Из этого правила вытекают весьма простые законы, определяющие коэффициент растворимости, упругость диссоциации и условия равновесия при сложных химических системах, вызываемого действием твердых тел на жидкую или газообразную среду. Когда раствор насыщен, т. е. находится в состоянии равновесия, равновесие не нарушится, если мы, не изменяя температуры и давления, прибавим какое угодно количество раствора той же крепости (концентрации), или прибавим какой угодно избыток соли, отсюда: при данных температуре и давлении коэффициент растворимости представляет определенную величину крепости раствора, которая не изменяется от избытка растворяемого тела, и зависит только от его состояния (физического состояния, кристаллической формы, химического состояния). Совершенно такому же закону подчинена и упругость диссоциации (закон Дебре), причем крепости или концентрации раствора соответствует упругость диссоциации, т. е. концентрация газа. Весьма многочисленны случаи контактных действий в однородной среде, остающиеся в большинстве случаев и поныне совершенно неразгаданными. Выдающаяся роль принадлежит в этом отношении воде: множество реакций, часто весьма простых, не совершаются при полном отсутствии воды, при незначительных же ее следах протекают весьма легко. Пламя горящей окиси углерода мгновенно гаснет в атмосфере тщательно высушенного кислорода (см. Контактные явления). Таким образом, осуществление химического равновесия требует соблюдения особых, специфических условий. Вне этих условий -тела или системы тел, остаются без изменений, хотя они должны были бы находиться в состоянии неустойчивом. Таким состояниям дают название ложных равновесий (Дюгем). Учение об Обратимости реакций в настоящее время может служить основанием для предсказания возможных реакций, но не необходимых. Лишь в условиях равновесия учение об Обратимости реакций дает законы возможных и необходимых реакций. Общий закон химических равновесий гласит: в системе химического равновесия изменение внешнего агента вызывает только такие внутренние превращения в системе, которые ведут к противоположному изменению того же агента. Если мы увеличиваем давление, то могут происходить только такие реакции, которые ведут к уменьшению давления, если мы повышаем температуру, то могут происходить только реакции, сопровождающиеся поглощением тепла, т. е. ведущие к понижению температуры. Отсюда вытекает целый ряд весьма важных следствий. Химические равновесия, так сказать, консервативны в отношении давления и температуры и в случаях нарушения равновесия испытывают такие внутренние превращения, которые ведут к возможному сохранению прежнего давления и прежней температуры. Внешнее давление повышает "предел" реакции тогда, когда реакция ведет к уплотнению, если же реакция состоит в чистом замещении, то изменения внешнего давления не влияют на предел реакции, как например в случае Н 2 + I2 ↔ 2HI, так как здесь реакция не сопровождается изменением объема. То же положение определяет и влияние химической массы, указанное Бертоллэ: удаляя один из продуктов реакции, мы можем заставить реакцию, производящую этот продукт, дойти до конца, т. е. удаление одного из продуктов реакции ведет к его образованию. Влияние массы сводится к влиянию давления, ибо в том случае, когда продукт газообразен, "удаление" будет уменьшением давления, в том же случае, когда мы имеем дело с телом нелетучим, явление можно рассматривать при участии "полупроницаемой стенки", т. е. при условиях, подобных расширению и сжатию газа. Наконец, указанным законом ясно определено также соотношение между теплотой реакции и ее направлением. Необходимо отказаться от всех попыток построить теорию химического сродства исключительно на данных термохимии, найти соотношение между теплотой реакции и ее направлением, независимо от температуры и других условий, чем выше температура, тем больше шансов образования соединения с поглощением тепла. В согласии с этим находятся на первый взгляд необъяснимые явления: в то время как при температурах выше 1000° начинает заметно разлагаться такое прочное тело, как вода, образовавшаяся с громадным выделением тепла; при тех же температурах наблюдается образование таких весьма непрочных веществ, как озон и окись серебра, легко разлагающихся при обыкновенной температуре с выделением тепла. "Предел" реакции, совершающейся с выделением тепла, должен понижаться с повышением температуры, и наоборот. Экзотермические соединения [Т. е. соединения, образованные с выделением тепла] более устойчивы при низкой температуре, а эндотермические соединения — при высокой. На том же основании повышение температуры вызывает образование пара и плавление твердого тела, выделение из раствора газа и переход в раствор твердого тела (в большинстве случаев), ибо все эти превращения совершаются с поглощением тепла. Когда же превращение не сопровождается ни выделением, ни поглощением тепла (тепловой эффект равен нулю), наступивший при данной температуре "предел" реакции не изменяется с ее повышением, как это и наблюдается. Все перечисленные следствия могут быть выражены точными формулами, устанавливающими количественную зависимость между факторами химического равновесия и дающими численные результаты вполне согласные с действительностью. Вывод этих формул совершается на основании теории обратимого процесса (см. Термодинамика, Термодинамический потенциал, Энтропия, Энергия свободная). Необходимо иметь в виду, что все эти выводы строго применяемы лишь к состояниям равновесия, т. е. в условиях Обратимости реакции. Чем выше температура, тем подвижнее химические системы, тем скорее устанавливается предел реакции, и при высоких температурах все чаще и чаще приходится иметь дело с явлениями химического равновесия. Не то при низких температурах. Здесь реакции совершаются часто весьма медленно, найти "предел" реакции и убедиться в ее Обратимость иногда нелегко. По теории всякая реакция, выделяющая тепло, должна сделаться полной при температуре абсолютного нуля при каком угодно давлении. Между тем опыт показывает, что при температуре около -100° наиболее энергичные реакции совершенно прекращаются. Ошибочно было бы, однако, предполагать, что все наблюдаемые реакции должны быть неизбежно неполными, т. е. представляют явления Обратимости. Системы могут находиться вне условий равновесия и тогда превращение, раз начавшееся, неизбежно должно быть полным, каким является, например, испарение жидкости в сосуде такого объема, который превышает объем данного количества насыщенного пара. Пока не достигнуто предельное давление при данной температуре, реакция должна неизбежно совершаться в одну сторону, как совершается, например, при обыкновенном давлении превращение алмаза в уголь при накаливании, обратное же превращение требует сверх того и применения громадных давлений. Влияние температуры также сказывается не вплоть до абсолютного нуля. Многие реакции и при температурах высоких заканчиваются вполне, и лишь при дальнейшем повышении температуры могут обнаружить заметный "предел" реакции подобно тому, как для многих тел начало испарения обнаруживается только при температурах весьма высоких. Ниже этой температуры явления химического равновесия исчезают и рядом с продуктом полной реакции, образованным с выделением тепла [Ибо при понижении температуры может сделаться полной только та реакция, которая выдает тепло, на основании закона равновесия.], мы наблюдаем и состояние "ложного равновесия". При температурах низших, чем эта температура начала реакции, нагревание само по себе не вызывает реакции. Она может появиться, однако, под влиянием контактных действий, света, удара, сотрясения. При этом превращение совершается часто с громадной скоростью и потому реакции этого рода часто представляют характер взрыва.
5) Метод исследования химических равновесий на основании условий Обратимости реакций. Не всегда возможно изучать явления химических равновесий, непосредственно наблюдая изменение какого-либо признака, его сопровождающего, особенно когда дело идет о высоких температурах, при которых с этими явлениями чаще всего приходится встречаться. В этом случае гораздо чаще применяется метод быстрого охлаждения, основанный на том, что при низкой температуре система или переходит в состояние "ложного равновесия", т. е. перестает вовсе изменяться, или изменяется крайне медленно. По охлаждении мы можем, следовательно, наблюдать приблизительно те количественные отношения, которые имели место в момент химического превращения при высокой температуре. На этом начале построены главнейшие методы, которые применил Девилль к изучению явлений диссоциации (см.). На этом же основано применение электрической искры для получения эндотермических соединений, например для получения озона: здесь мы имеем дело также с быстрым охлаждением, сменяющим высокую температуру, вызванную искрой.
6) Teория гальванических элементов, как следствие учения об Обратимости реакции. Гальванические элементы представляют случаи превращения химической энергии в электрическую. Предполагая, что мерой химической энергии (сродства) служит величина теплового эффекта реакции, первоначально принимали, что мерой запаса электрической энергии в данном элементе может служить величина теплового эффекта реакций, происходящих при работе элемента. Произведенные на этом основании вычисления величины электровозбудительной силы дали результаты во многих случаях несогласные с действительностью. Вычисленная величина электровозбудительной силы оказывалась иногда больше, а иногда меньше наблюдаемой, т. е. такие элементы должны были при работе или разогреваться, т. е. терять часть энергии, или охлаждаться, т. е. работать, заимствуя частью энергию извне. Справедливость такого заключения наглядно обнаруживается одним элементом Паальцова (сернокислый цинк, соляная кислота, уксуснокислый цинк, сернокислый цинк), в котором химическая реакция сопровождается поглощением тепла; а между тем этот элемент дает сильный ток. Несомненно, что и здесь ток вызывается химической реакцией, подобно тому, как движение поршня в цилиндре вызывается испарением воды, которое также сопровождается поглощением тепла. Применение к данному вопросу учения об Обратимости дало теорию гальванических элементов и послужило новым, блестящим доказательством целесообразности этого учения. Можно построить элемент, свободный от поляризации, которого действие может быть подчиненно условию Обратимости. Когда элемент работает, то в нем совершается определенная химическая реакция и в цепи, соединяющей полюсы, течет ток от положительного полюса элемента к отрицательному при определенной величине электровозбудительной силы на полюсах. Если в цепи поместить самостоятельный источник электровозбудительной силы, могущей дать ток обратного направления, то, при достаточной величине электровозбудительной силы этого нового источника, ток пойдет в обратном направлении и в нашем элементе химическая реакция будет совершаться в обратном направлении. При помощи законов термодинамики (см. Гельмгольц, Энергия свободная) установлены нижеследующие соотношения между теплотой реакции и энергией элемента, или, как говорят, между химической и вольтаической теплотой (энергия тока может быть нацело превращена в теплоту). Вольтаическая теплота равна химической в тех элементах, которых электровозбудительная сила не зависит от температуры элемента. Только в этом случае вычисленная по химической теплоте величина электровозбудительной силы совпадает с наблюдаемой. Если электровозбудительная сила возрастает с температурой, вольтаическая теплота больше химической и величина электровозбудительной силы больше вычисленной по химической теплоте, и наоборот. Зная теплоту реакции, величину электровозбудительной силы и изменяемость этой величины с температурой, можно по двум из этих величин вычислить третью. В высокой степени интересны также соотношения между величиной электровозбудительной силы и внешним давлением. Если химическая реакция, происходящая в элементе, не сопровождается изменением объема, электровозбудительная сила не зависит от величины внешнего давления. Если реакция в элементе сопровождается увеличением объема, электровозбудительная сила уменьшается с увеличением давления, и наоборот. В элементах, как элемент Бунзена, выделяющих газы, реакция сопровождается большим увеличением объема. Электровозбудительная сила в таких элементах тем меньше, чем больше давление, при котором работает элемент. Наоборот, в газовых батареях, в которых химическая реакция сопровождается большим уменьшением объема, электровозбудительная сила тем больше, чем больше давление газов. Перечисленные следствия согласны с данными опыта. На основании законов Обратимости установлено, таким образом, соотношение между химическим превращением, теплотой, электрической энергией и механической работой.