Автор работы: Пользователь скрыл имя, 13 Декабря 2013 в 23:16, реферат
Подгру́ппа хро́ма — химические элементы 6-й группы периодической таблицы химических элементов (по устаревшей классификации — элементы побочной подгруппы VI группы)[1]. В группу входят хром Сr, молибден Mo и вольфрам W[2]. На внешнем энергетическом уровне у атомов хрома и молибдена находится один электрон, у вольфрама — два, поэтому характерным признаком данных элементов является металлический блеск, что и отличает эту побочную подгруппу от главной. Степень окисления в соединениях всех элементов подгруппы хрома равна +6, а также +5, +4, +3 и +2. По возрастанию порядкового номера элементов возрастает и температура плавления. Например, вольфрам — самый тугоплавкий метал, его температура плавления составляет 3390 °C. Элементы подгруппы достаточно устойчивы к внешним факторам (воздух, вода)
S+4 – 2ē ® S+6 |
1 |
Mn+7 + 1ē ® Mn+6 |
2 |
метод полуреакций:
SO32- + 2OH- - 2ē ® SO42- + H2O |
1 |
MnO41- + ē ® MnO42- |
2 |
––––––––––––––––––––––––––––––
SO32- + 2OH- + 2MnO4- ® SO42- + H2O + 2MnO42-
Биологическая роль и содержание в живых организмах
Марганец содержится в организмах всех растений и животных, хотя его содержание обычно очень мало, порядка тысячных долей процента, он оказывает значительное влияние на жизнедеятельность, то есть является микроэлементом. Марганец оказывает влияние на рост, образование крови и функции половых желёз. Особо богаты марганцем листья свёклы — до 0,03 %, а также большие его количества содержатся в организмах рыжихмуравьёв — до 0,05 %. Некоторые бактерии содержат до нескольких процентов марганца.Избыточное накопление марганца в организме сказывается, в первую очередь, на функционировании центральной нервной системы. Это проявляется в утомляемости, сонливости, ухудшении функций памяти. Марганец является политропным ядом, поражающим также легкие, сердечно-сосудистую и гепатобиллиарную системы, вызывает аллергический и мутагенный эффект.
С химической точки зрения технеций и его соединения малотоксичны. Опасность технеция вызывается его радиотоксичностью.Технеций при введении в организм попадает почти во все органы, но в основном задерживается в желудке и щитовидной железе. Поражение органов вызывается его β-излучением с дозой до 0,1 р/(час·мг).При работе с технецием используются вытяжные шкафы с защитой от его β-излучения или герметичные боксы.
Маловероятно,
что рений участвует в биохимич
Подгру́ппа желе́за — химические элементы 8-й группы периодической таблицы химических элементов (по устаревшей классификации — элементы побочной подгруппы VIII группы)[1]. В группу входят железо Fe, рутений Ru и осмий Os. На основании электронной конфигурации атома к этой же группе относится и искусственно синтезированный элемент хассий Hs, который был открыт в 1984 в Центре исследования тяжёлых ионов (нем. Gesellschaft für Schwerionenforschung, GSI), Дармштадт, Германия в результате бомбардировки свинцовой (208Pb) мишени пучком ионов железа-58 из ускорителя UNILAC. В результате эксперимента были синтезированы 3 ядра 265Hs, которые были надёжно идентифицированы по параметрам цепочки α-распадов[2]. Одновременно и независимо эта же реакция исследовалась в ОИЯИ (Дубна, Россия), где по наблюдению 3 событий α-распада ядра 253Es также был сделан вывод о синтезе в этой реакции ядра 265Hs, подверженного α-распаду[3].
Желе́зо — элемент восьмой группы
(по старой классификации — побочной подгруппы
восьмой группы) четвёртого периода периодической
системы химических элементов Д. И. Менделеева с а
Простое вещество железо — ковкий метал
Собственно,
железом обычно называют его сплавы
с малым содержанием примесей
(до 0,8 %), которые сохраняют мягкость и пластичность
чистого металла. Но на практике чаще применяются
сплавы железа с углеродом: сталь (до 2,14 вес. %
углерода) и чугун (более 2,14 вес. % углерода), а также нержавеющая(
Для железа характерны степени окисления железа — +2 и +3.
Степени окисления +2 соответствует чёрный оксид FeO и зелёный гидроксид Fe(OH)2. Они имеют основный характер. В солях Fe(+2) присутствует в виде катиона. Fe(+2) — слабый восстановитель.
Степени
окисления +3 соответствуют красно-
Железо (+3) чаще всего проявляет слабые окислительные свойства.
Степени окисления +2 и +3 легко переходят между собой при изменении окислительно-восстановительных условий.Кроме того, существует оксид Fe3O4, формальная степень окисления железа в котором +8/3. Однако этот оксид можно также рассматривать как феррит железа (II) Fe+2(Fe+3O2)2.
Также существует степень окисления +6. Соответствующего оксида и гидроксида в свободном виде не существует, но получены соли — ферраты (например, K2FeO4). Железо (+6) находится в них в виде аниона. Ферраты являются сильными окислителями.
Свойства простого вещества
При хранении на воздухе при температуре до 200 °C железо постепенно покрывается плотной плёнкой оксида, препятствующего дальнейшему окислению металла. Во влажном воздухе железо покрывается рыхлым слоемржавчины, который не препятствует доступу кислорода и влаги к металлу и его разрушению. Ржавчина не имеет постоянного химического состава, приближённо её химическую формулу можно записать как Fe2O3·xH2O.
Взаимодействует с кислотами
С соляной кислотой:
С разбавленной серной кислотой:
Концентрированные азотная и се
Взаимодействие с кислородом.Сгорание железа на воздухе:
Сгорание в чистом кислороде:
Пропускание кислорода или воздуха через расплавленное железо:
Взаимодействие с порошком серы при нагревании:
Взаимодействие с галогенами при нагревании.Горение в хлоре:
При повышенном давлении паров брома:
Взаимодействие с йодом:
Взаимодействие с неметаллами:
С азотом при нагревании:
С фосфором при нагревании:
С углеродом:
С кремнием:
Взаимодействие раскалённого железа с водяным паром:
Железо восстанавливает металлы, которые в ряду активности стоят правее него, из растворов солей:
Железо восстанавливает соединения железа(III):
При повышенном давлении металлическое железо реагирует с оксидом углерода(II) CO, причём образуется жидкий, при обычных условиях легко летучий пентакарбонил железа Fe(CO)5. Известны также карбонилы железа составов Fe2(CO)9 и Fe3(CO)12. Карбонилы железа служат исходными веществами при синтезе железоорганических соединений, в том числе и ферроцена состава (η5-C5H5)2Fe.
Чистое металлическое железо устойчиво в воде и в разбавленных растворах щелочей. Железо не растворяется в холодных концентрированных серной и азотной кислотах из-за пассивации поверхности металла прочной оксидной плёнкой. Горячая концентрированная серная кислота, являясь более сильным окислителем, взаимодействует с железом.
Соединения железа (II)
Оксид железа(II) FeO обладает основными свойствами, ему отвечает основание Fe(OH)2. Соли железа (II) обладают светло-зелёным цветом.
При их хранении, особенно во влажном воздухе, они коричневеют за счёт окисления до железа (III). Такой же процесс протекает при хранении водных растворов солей железа(II):
Из солей железа(II) в водных растворах устойчива соль Мора — двойной сульфат аммония и железа(II) (NH4)2Fe(SO4)2·6Н2O.
Реактивом на ионы Fe2+ в растворе может служить гексацианоферрат(III) калия K3[Fe(CN)6] (красная кровяная соль). При взаимодействии ионов Fe2+ и [Fe(CN)6]3− выпадает осадок гексацианоферрата (III) калия-железа (II)(берлинская лазурь).
который внутримолекулярно перегруппировывается в гексацианоферрат (II) калия-железа (III):
Для количественного определения железа (II) в растворе используют фенантролин Phen, образующий с железом (II) красный комплекс FePhen3 (максимум светопоглощения — 520 нм) в широком диапазоне рН (4-9)[18].
Соединения железа (III)
Оксид железа(III) Fe2O3 слабо амфотерен, ему отвечает ещё более слабое, чем Fe(OH)2, основание Fe(OH)3, которое реагирует с кислотами:
Соли Fe3+ склонны к образованию кристаллогидратов. В них ион Fe3+ как правило окружен шестью молекулами воды. Такие соли имеют розовый или фиолетовый цвет.Ион Fe3+ полностью гидролизуется даже в кислой среде. При рН>4 этот ион практчиески полностью осаждается[19] в виде Fe(OH)3:
При частичном гидролизе иона Fe3+ образуются многоядерные оксо- и гидроксокатионы, из-за чего растворы приобретают коричневый цвет.Основные свойства гидроксида железа(III) Fe(OH)3 выражены очень слабо. Он способен реагировать только с концентрированными растворами щелочей:
Образующиеся при этом гидроксокомплексы железа(III) устойчивы только в сильно щелочных растворах. При разбавлении растворов водой они разрушаются, причём в осадок выпадает Fe(OH)3.При сплавлении со щелочами и оксидами других металлов Fe2O3 образует разнообразные ферриты:
Соединения железа(III) в растворах восстанавливаются металлическим железом:
Железо(III)
способно образовывать двойные сульфаты
с однозарядными катионами типа
Для качественного обнаружения в растворе соединений железа(III) используют качественную реакцию ионов Fe3+ с неорганическими тиоцианатами SCN−. При этом образуется смесь ярко-красных роданидных комплексов железа [Fe(SCN)]2+, [Fe(SCN)2]+, Fe(SCN)3, [Fe(SCN)4]-.[20] Состав смеси (а значит, и интенсивность её окраски) зависит от различных факторов, поэтому для точного качественного определения железа этот метод неприменим.
Другим
качественным реактивом на ионы Fe3+ служит гексацианоферрат(
Количественно ионы Fe3+ определяют по образованию красных (в слабокислой среде) или жёлтых (в слабощелочной среде) комплексов с сульфосалициловой кислотой. Эта реакция требует грамотного подбора буферов, так как некоторые анионы (в частности, ацетат) образуют с железом и сульфосалициловой кислотой смешанные комплексы со своими оптическими характеристиками.
Соединения железа (VI)
Ферраты — соли не существующей в свободном виде
железной кислоты H2FeO4. Это
соединения фиолетового цвета, по окислительным
свойствам напоминающие перманганаты,
а по растворимости — сульфаты. Получают
ферраты при действии газообразного хлора или озона
Ферраты
также можно получить электроли
Ферраты — сильные окислители. В кислой среде разлагаются с выделением кислорода:[22]:
Окислительные свойства ферратов используют для обеззараживания воды.
Руте́ний — элемент побочной подгруппы
восьмой группы пятого периода периодической
системы химических элементов Д. И. Менделеева,ато
Рутений не растворяется в кислотах и царской водке (смеси HCl и HNO3). Вместе с тем рутений реагирует с хлором выше 400 °C (образуется RuCl3) и со смесью щелочи и нитрата при сплавлении (образуются рутенаты, например Na2RuO4).Рутений способен давать соединения, соответствующие разной степени окисления:
8 RuO4; RuO4 · PCl3
7 M[RuO4]
6 M2[RuO4]; M2[RuF8]; RuF6
5 M[RuF6]; RuF5
4 RuCl4; RuO2; M2[RuCl6]
3 RuCl3; М3[RuCl6]
2 M2[RuCl4]; M4[Ru(CN)6]
1 Ru(CO)nBr
0 Ru(CO)n
Соединения
рутения представлены также широким
спектром нитрозосоединений — содержащих
группировку RuNO. Данные комплексные соединения,
в особенности, нитрозамины (
О́смий (лат. Osmium) — химичес