Деструкция полимеров

Автор работы: Пользователь скрыл имя, 14 Марта 2014 в 19:40, курсовая работа

Краткое описание

Реакциями деструкции называются реакции, протекающие с разрывом связей основной молекулярной цепи и приводящие к понижению молекулярной массы полимера без изменения его химического состава (если концевыми группами макромолекулы можно пренебречь). Деструкция является очень важной реакцией в химии высокомолекулярных соединений. Ею пользуются для определения строения высокомолекулярных соединений, а также для получения из природных полимеров ценных низкомолекулярных веществ, например глюкозы из целлюлозы и крахмала; белков из аминокислот. Иногда деструкцию используют для частичного понижения молекулярной массы полимеров, чтобы облегчить их переработку.

Содержание

Введение……………………………………………………………………3
Краткая характеристика полимеров………………………………….4
Деструкция полимеров…………………………………………………..11
3.1. Химическая деструкция…………………………………………….13
3.2. Окислительная деструкция………………………………………....21
3.3. Деструкция под влиянием физических воздействий……………26
3.4. Термическая деструкция……………………………………………29
3.5. Фотохимическая деструкция……………………………………….34
3.6. Деструкция под влиянием радиоактивного излучения…………36
3.7. Механохимическая деструкция…………………………………….39
4. Стабилизация полимеров для защиты от старения…………………..41
5. Заключение…………………………………………………………………42
6. Список литературы…………………………………………………………43

Прикрепленные файлы: 1 файл

курсовая.docx

— 331.42 Кб (Скачать документ)

Огнеупорные полимеры 

Многие полимеры, такие как полиуретаны, полиэфирные и эпоксидные смолы, склонны к воспламенению, что зачастую недопустимо при практическом применении. Для предотвращения этого применяются различные добавки или используются галогенированные полимеры. Галогенированные ненасыщенные полимеры синтезируют путем включения в конденсацию хлорированных или бромированных мономеров, например, гексахлорэндометилентетрагидрофталевой кислоты (ГХЭМТФК), дибромнеопентилгликоля или тетрабромфталевой кислоты. Главным недостатком таких полимеров является то, что при горении они способны выделять газы, вызывающие коррозию, что может губительно сказаться на располагающейся рядом электронике.

Действие гидроксида алюминия основано на том, что под высокотемпературным воздействием выделяется вода, препятствующая горению. Для достижения эффекта требуется добавлять большие количества гидроксида алюминия: по массе 4 части к одной части ненасыщенных полиэфирных смол.

Пирофосфат аммония действует по другому принципу: он вызывает обугливание, что вместе со стеклообразным слоем пирофосфатов даёт изоляцию пластика от кислорода, ингибируя распространение огня.

Новым перспективным наполнителем являются слоистые алюмосиликаты, производство которых создаётся в России[3].

Применение 


Благодаря ценным свойствам полимеры применяются в машиностроении, текстильной промышленности, сельском хозяйстве и медицине, автомобиле- и судостроении, авиастроении, в быту (текстильные и кожевенные изделия, посуда, клей и лаки, украшения и другие предметы). На основании высокомолекулярных соединений изготовляют резины, волокна,пластмассы, пленки и лакокрасочные покрытия. Все ткани живых организмов представляют высокомолекулярные соединения.

Наука о полимерах 

Наука о полимерах стала развиваться как самостоятельная область знания к началу Второй мировой войны и сформировалась как единое целое в 50-х годах XX столетия, когда была осознана роль полимеров в развитии технического прогресса и жизнедеятельности биологических объектов. Она тесно связана с физикой, физической, коллоидной и органическойхимией и может рассматриваться как одна из базовых основ современной молекулярной биологии, объектами изучения которой являются биополимеры.


 

 

 

 

 

 

 

 

 

  1. Деструкция полимеров

 

Деструкция полимеров может протекать под действием химических агентов (воды, кислот, спиртов, кислорода и т. д.) или под влиянием физических воздействий (тепла, света, ионизирующего излучения, механической энергии и т. д.).

Химическая деструкция лучше всего изучена и наиболее характерна для гетероцепных полимеров и протекает избирательно с разрывом связи углерод — гетероатом; конечным продуктом химической деструкции является мономер. Углерод-углеродная связь значительно более стойка к действию химических агентов, поэтому химическая деструкция карбоцепных полимеров возможна только в очень жестких условиях или при наличии боковых групп, понижающих прочность связей в основной цепи полимера.

В связи с проблемой охраны окружающей среды и все более широким применением полимеров в областях, где они находятся в контакте с живыми организмами, за последние годы значительно возрос интерес к вопросу о биологической деструкции, протекающей под действием микроорганизмов, ферментов и т. д.

Деструкция полимеров под влиянием физических воздействий обычно протекает неизбирательно, так как энергетические характеристики всех химических связей довольно близки.

По характеру продуктов распада различают деструкцию по закону случая и деполимеризацию. Первый вид деструкции в известной степени напоминает процесс, обратный реакции поликонденсации; при этом образующиеся осколки велики по сравнению с размером мономерного звена. При деполимеризации, вероятно, имеет место последовательный отрыв мономеров от конца цепи, т. е. реакция, обратная росту цепи при полимеризации. Эти два вида деструкции могут протекать раздельно или одновременно.

Кроме того, возможна деструкция по слабой связи, находящейся посередине макромолекулы.

При деструкции по закону случая молекулярная масса полимера обычно падает очень быстро, а при деполимеризации — значительно медленнее. У полиметилметакрилата с молекулярной массой 44 000, например, степень полимеризации остаточного продукта практически не меняется до тех пор, пока деполимеризация не прошла на 80 %.

Следует отметить, что при эксплуатации полимерные материалы обычно подвергаются одновременному действию различных факторов, вызывающих деструкцию. Например, термоокислительная деструкция возбуждается совместным действием тепла и кислорода, фотохимическая деструкция сопровождается гидролизом и окислением и т. д.

Деструкция высокомолекулярных соединений отличается от аналогичного процесса у низкомолекулярных веществ тем, что она, как правило, не приводит к образованию новых типов соединений. Например, глюкоза, полученная при гидролитической деструкции целлюлозы, является, так же как исходный полимер, углеводом.

 

 

 

 

 

 

 

 

 

 

    1. Химическая деструкция

 

Гидролиз и алкоголиз. Наиболее распространенным видом химической деструкции полимеров является гидролиз — расщепление химической связи с присоединением молекулы воды. Катализаторами процесса гидролиза служат водородные или гидроксильные ионы. Гидролиз некоторых высокомолекулярных соединений ускоряется в присутствии природных катализаторов — ферментов, избирательно действующих на некоторые связи. Склонность к гидролизу определяется природой функциональных групп и связей, входящих в состав полимера. При гидролизе боковых функциональных групп изменяется химический состав полимера; при гидролизе связей, входящих в состав основной молекулярной цепи, происходит деструкция и уменьшается молекулярная масса полимера. Концевые группы вновь образующихся молекул по своей природе не отличаются от концевых групп исходного полимера. При невысокой степени деструкции доля вновь образующихся концевых групп настолько мала, что они не влияют на химический состав поли мера и свойства полимера практически не изменяются. С повышением степени деструкции увеличивается доля концевых групп, и становится заметным их влияние на свойства полимера.

Из гетероцепных полимеров наиболее легко гидролизуются полиацетали, сложные полиэфиры, полиамиды. Большое практическое значение имеет гидролиз природных полиацеталей — полисахаридов. При их полном гидролизе образуются соответствующие моносахариды. Так, продуктом полного гидролиза крахмала и целлюлозы является глюкоза. При разрыве полуацетальной (гликозидной) связи образуются гидроксильная и альдегидная (в полуацетальной форме) группы/

 

 

Катализаторами реакции гидролиза полисахаридов являются водородные ионы. Гидроксильные ионы не ускоряют этой реакции, благодаря чему полисахариды относительно стойки в щелочной среде и нестойки в кислой. Катализаторами реакции гидролиза полисахаридов служат также ферменты: а-глюкозидаза для крахмала и р-глюкози-даза для целлюлозы. Кислотный гидролиз крахмала применяется как промышленный метод получения глюкозы. Путем ферментативного расщепления и последующего брожения из крахмала получают этанол крахмал мальтоза глюкоза

 

(C6H10O5)n → n/2С12Н22О11 → nС6Н12О6 → 2nC2H5OH+ 2nСО2

 

В последнее время для получения спирта вместо пищевого сырья используют содержащие целлюлозу отходы растительных материалов (древесные опилки, хлопковую и подсолнечную шелуху). При гидролизе этих материалов расщепляется не только целлюлоза, но и другие сопутствующие ей полисахариды. При этом получаются способные сбраживаться гексозы (глюкоза, манноза, галактоза) и несбраживаемые пен-тозы (ксилоза, арабиноза), из которых приготавливают кормовые дрожжи.

Различные полисахариды гидролизуготся с неодинаковой скоростью. К наиболее трудно гидролизуемым полисахаридам относится целлюлоза; крахмал и пентозаны гидролизуются значительно легче. Это объясняется главным образом различной физической структурой полисахаридов, а также особенностями их химического строения.

Катализаторами гидролиза полимеров, содержащих амидную связь, являются основания и кислоты.

 

 

При гидролизе амидной связи образуются аминогруппа и карбоксильная группа:

Катализаторами гидролиза белков служат также протеолитические ферменты (протеиназы).

Конечными продуктами гидролиза белков являются различные б-аминокислоты, синтетические полиамиды гидролизуются с образованием соответствующих дикарбоновых кислот и диаминов или исходных аминокислот.

Гидролиз и последующее исследование аминокислотного состава образующихся продуктов являются основным методом изучения строения белковых веществ. Гидролиз синтетических полиамидов находит практическое применение при использовании отходов их производства. Эти отходы гидролизуют до мономеров или низкомолекулярных полимеров и снова используют для синтеза полиамидов.

Сложные полиэфиры также гидролизуются в присутствии кислот и щелочей, причем щелочи являются более активными катализаторами. При гидролитическом расщеплении эфирной связи возникают спиртовые и кислотные концевые группы

 

 

Легче всего гидролизуются полиэфиры гликолей и алифатических дикарбоновых кислот. Полиэфиры, образованные ароматическими кислотами, более устойчивы к гидролизу.

При гидролизе полиэтилентерефталата, так же как и при гидролизе целлюлозы, большую роль играет физическая структура полимера. В гетерогенной среде гидролиз полиэтилентерефталата протекает только на поверхности, причем скорость его настолько мала, что полимер практически стоек к действию кислот и щелочей. В растворе же полиэтилентерефталат гидролизуется с такой же легкостью, как низкомолекулярные эфиры терефталевой кислоты.

Гидролиз полиэфиров также может быть использован для регенерации исходных компонентов из отходов производства. Можно гидролизовать полиэтилентерефталат серной кислотой и полученный низкомолекулярный полимер или смесь мономеров повторно использовать для синтеза полиэфира.

Химическая деструкция также может быть осуществлена при помощи безводных кислот или их ангидридов — ацидолиз, аминов — аминолиз, фенолов — фенолиз и т. д.

 

 

Для синтеза полиэтилентерефталата применяют не свободную кислоту, а ее эфиры. Поэтому для расщепления отходов лучше использовать не гидролиз, а алкоголиз (гликолиз). Так, при обработке полиэтилентерефталата кипящим этиленгликолем образуется дигликолевый эфир терефталевой кислоты или низкомолекулярный полиэфир с концевыми гликолевыми группами, которые снова могут принимать участие в реакции поликонденсации:

Алкоголизу можно подвергать также полисахариды. Катализаторы реакции алкоголиза те же, что и гидролиза.

 

 

 

При алкоголизе полисахаридов в присутствии кислот происходит переацеталирование с разрывом связи и образованием гликозидных и гидроксильной групп на концах цепей.

На расщеплении целлюлозы сверхконцентрированной соляной кислотой основан метод определения выхода глюкозы при полном гидролизе целлюлозы. Целлюлоза довольно быстро деструктируется и под действием газообразного хлористого водорода

 

 

При обработке целлюлозы уксусным ангидридом в присутствии большого количества серной кислоты- при повышенной температуре протекает ацидолиз целлюлозы, основным продуктом которого является октаацетат целлобиозы

 

 

Конечным продуктом ацидолиза в этих условиях является пентаацетат глюкозы

 

 

Частичный ацидолиз целлюлозы протекает и в условиях промышленного получения ацетата целлюлозы.

При действии кр1слот на полиэфиры происходит переэтерификация, а при действии на полиамиды — переамидирование. В обоих случаях процесс сопровождается деструкцией макромолекулы.

Информация о работе Деструкция полимеров