Автор работы: Пользователь скрыл имя, 22 Октября 2012 в 16:27, реферат
Состав битумов. Свойства битумов. Применение битумов. Дорожные покрытия. Битумы как водозащитные средства. Кровельные материалы. Другие области применения. Классификация битумов. Методы производства битумов. Вакуумная перегонка. Деасфальтизация парафинами. Окисление воздухом. Состояние и перспективы производства битумов в России. Сравнение качества российского и зарубежного битума. Проблемы, связанные с производством битумов. Модернизация производства битума.
Основное назначение процесса деасфальтизации гудрона парафинами (чаще пропаном, иногда бутаном или пентаном) — получение деасфальтизата, являющегося сырьем для производства масел и установок каталитического крекинга и гидрокрекинга. Остаток деасфальтизации в некоторых случаях соответствует требованиям стандарта на битум, а чаще его используют как компонент сырья битумного производства.
Основы процесса деасфальтизации парафинами. Деасфальтизацию гудрона сжиженными низкомолекулярными алканами проводят в области температур, близких к критическим температурам алканов (для пропана 97 °С, для н-бутана 152 °С и для н-пентана 197 °С). В этой области повышение температуры приводит к резкому уменьшению плотности и увеличению мольного объема низкомолекулярных алканов, а на плотности мольном объеме высокомолекулярных углеводородов, находящихся в состоянии, далеком от критического, сказывается несущественно. В результате уменьшаются силы притяжения между молекулами легких и тяжелых углеводородов, а те же силы между молекулами тяжелых углеводородов остаются относительно неизменными. Этим объясняется уменьшение растворимости высокомолекулярных органических соединений в низкомолекулярных парафинах при повышении температуры процесса.
Влияние параметров деасфальтизации на ее эффективность можно показать на примере широко распространенной деасфальтизации пропаном.
Растворимость в пропане органических соединений разного строения неодинакова. Наибольшее стремление выделиться из раствора проявляют те компоненты, молекулы которых наиболее сильно взаимодействуют между собой и особенно слабо с молекулами пропана. Практически нерастворимыми являются асфальтены: при достаточном расходе растворителя они выделяются из раствора при любых температурах. Далее растворимость уменьшается в такой последовательности: смолы, полициклические и моноциклические ароматические углеводороды с алкильными боковыми цепями, парафино-нафтеновые углеводороды. Это и используют при проведении процесса деасфальтизации.
Пропан и гудрон контактируют в колонне деасфальтизации, в нижней части которой поддерживается температура в пределах 50—65 °С, а в верхней — 75—88 °С. В нижней части колонны формируется раствор асфальта, содержащий около 35% (масс.) пропана. С понижением температуры здесь увеличивается выход деасфальтизата за счет улучшения растворимости его в пропане. В верхней части колонны формируется раствор деасфальтизата, содержащий примерно 85% (масс.) пропана. С повышением температуры в этой части колонны улучшается качество деасфальтизата за счет уменьшения растворимости в пропане в первую очередь высокомолекулярных смолообразных компонентов. Температуры верха и низа колонны нельзя регулировать независимо друг от друга: бесконтрольное и одновременное понижение температуры низа и повышение температуры верха приводит к чрезмерно большой циркуляции внутренних потоков и нестабильной работе колонны.
Выделяющиеся при высоких
В средней части колонны идет процесс коагуляции асфальтенов. В нижней части происходит пептизация асфальтенов смолами с образованием новой коллоидной системы и выделение из дисперсионной среды масляных углеводородов за счет уплотнения коллоидной структуры асфальта.
На эффективность
Низкомолекулярные растворители — парафиновые углеводороды, так же как в основном и компоненты гудрона, являются неполярными веществами. Растворимость в этом случае обусловлена действием дисперсионных сил. Поскольку эти силы значительнее у алканов с более длинной цепью, при переходе от пропана к бутану и пентану растворимость компонентов гудрона увеличивается. Получающийся при этом деасфальтизат имеет худшее качество, а асфальт — более концентрированный по смолам и особенно асфальтенам; температура размягчения асфальтов также повышается.
Эффективность деасфальтизации зависит от фракционного состава используемого сырья. Так, мазут в отличие от гудрона содержит низкомолекулярные компоненты, хорошо растворимые в пропане. Находясь в пропановом растворе, эти низкомолекулярные компоненты с более длинной цепью и большими силами дисперсионного характера в сравнении с пропаном действуют как промежуточный растворитель. Это повышает растворимость в пропановом растворе более высокомолекулярных, в том числе и нежелательных, компонентов. В результате качество деасфальтизата ухудшается.
Таким образом, учитывая изложенные выше факторы, можно регулировать процесс деасфальтизации с целью получения нужных результатов.
Схемы и режимы процессов деасфальтизации. Наибольшее применение в промышленной практике находят процессы деасфальтизации техническим пропаном и легким бензином, состоящим в основном из н-пентана.
Пропан и гудрон (при температуре 120—150 °С) подают в колонну деасфальтизации раздельными потоками через горизонтальные трубки — распределители с отверстиями: пропан в нижнюю часть, гудрон в верхнюю (рис. 5).
Рис. 5. Схема процесса деасфальтизации пропаном:
1— насосы; 2 — емкость жидкого пропана; 3 — паровые подогреватели; 4— деасфальтизационная колонна; 5 — регуляторы давления; 6 — печь; 7— эвапоратор; 8 — конденсаторы пропана; 9 — пропановый компрессор; 10 — испарительная колонна; 11 — испарительная камера; 12 — каилеотбойник; 13, 14 — отпарные колонны; 15 — скруббер.
Соотношение объемов пропана и гудрона составляет (4—8) : 1. Деасфальтизацию проводят при давлении 3,6—4,2 МПа. Собирающийся в верхней части колонны раствор деасфальтизата в пропане нагревается до 75—85 °С в зоне парового подогревателя, отстаивается и выводится из колонны. После снижения давления примерно до 2,4 МПа, осуществляемого посредством редуктора, этот раствор поступает в испаритель. Здесь за счет тепла обогрева (например, паром высокого давления) при температуре около 160 °С испаряется основная часть пропана. Отпаривание оставшегося пропана проводится в следующем аппарате — отпарной колонне.
Собирающийся при температуре 50—65 °С в нижней части колонны деасфальтизации раствор пропана в асфальте обрабатывается аналогично раствору деасфальтизата в пропане, но для обеспечения отпаривания и необходимой вязкости пото ков его нагревают в трубчатой печи до более высоких температур — 210—250 °С. Выходящие из отпарных колонн смеси паров воды и пропана промываются водой в скруббере. Работа скруббера в какой-то мере похожа на работу барометрического конденсатора смешения. При нарушениях режима отпаривания и промывки' здесь возможно возникновение вакуума, что связано с опасностью подсоса воздуха и образования взрывоопасной среды. Во избежание падения давления ниже атмосферного предусмотрена подача в скруббер пропана. Потоки пропана из испарителей и скруббера отделяются от увлеченных капелек жидкости в отбойнике, компримируются до давления 2 МПа, охлаждаются и в жидком состоянии возвращаются в процесс. Потери пропана компенсируют подачей свежего.
Деасфальтизация бензином (начало кипения 22—24 °С, конец кипения 62—65 ºС) принципиально не отличается от деасфальтизации пропаном. Процесс включает те же стадии экстракционного разделения сырья и регенерации растворителя (рис. 6). Отличия в режиме обусловлены различиями свойств растворителей.
Рис. 6. Схема процесса деасфальтиаации бензином:
1— деасфальтизационнан колонна; 2 — испаритель асфальтовой фазы; 3 — испаритель деасфальтизатной фазы.
Деасфальтизация бензином осуществляется при давлении 2,0—2,2 МПа и объемном соотношении бензина к гудрону, равном примерно 3 : 1. Температура верха деас-фальтизационной колонны — 125—150 °С, низа—115—125 °С. Фазы деасфальтизата и асфальта подают в испарители пере-давливанием. Давление в испарителях составляет 0,3—0,5 МПа, температуры низа — около 200 °С. С низа испарителей выводятся потоки деасфальтизата и асфальта, с верха — бензина (узел регенерации бензина на схеме не показан). Для облегчения дальнейшей работы с асфальтом, который в этом варианте деасфальтизации имеет высокую температуру размягчения, его в случае использования в битумном производстве смешивают с гудроном.
Качество асфальтов, полученных деасфальтизацией гудрона пропаном и н-пентаном, различно. Так, пропановые асфальты менее вязки, чем это требуется для большинства сортов битумов (или их вязкость примерно соответствует требованиям на дорожные битумы), а бензиновые асфальты — более вязки. Поэтому при использовании в качестве компонентов сырья битумного производства асфальты деасфальтизации пропаном рекомендуется окислять воздухом, а асфальты деасфальтизации бензином смешивать с гудроном.
Двухступенчатая деасфальтизация пропаном. Деасфальтизация гудрона пропаном проводится иногда в две ступени с целью увеличения общего выхода деасфальтизата. Выход асфальта при этом уменьшается, а его температура размягчения повышается.
Сырьем колонны первой ступени деасфальтизации является гудрон, второй — асфальтовая фаза из первой колонны. Пропан подается в каждую колонну. Деасфальтизаты выводятся из колонн раздельно и подаются в независимые друг от друга линии регенерации растворителя.
Температура во второй ступени деасфальтизации поддерживается примерно на 10 °С ниже температуры первой ступени. Это позволяет извлечь из асфальтовой фазы первой ступени дополнительное количество масляных углеводородов. Выход деасфальтизата второй ступени составляет 20—50 % выхода деасфальтизата первой ступени. Температура размягчения асфальта второй ступени на 20—30 °С выше температуры размягчения асфальта первой ступени.
Меньшей температуре во второй ступени деасфальтизации соответствует и меньшее давление. Поэтому асфальтовая фаза из первой ступени не перекачивается, а передавливается.
В остальном работа по двухступенчатой схеме деасфальтизации не отличается от работы по одноступенчатой.
Окисление остатков нефтепереработки воздухом является основным процессом производства битумов в отечественной нефтеперерабатывающей промышленности. В то же время этот процесс в других отраслях нефтепереработки почти не применяется. Поэтому здесь основы процесса окисления рассматриваются подробно.
Основы процесса окисления воздухом. Процесс окисления органических соединений кислородом воздуха идет путем образования, последовательного превращения и гибели свободных радикалов.
Свободные радикалы могут образовываться из молекул исходных веществ при би- и тримолекулярном взаимодействии. Далее происходит последовательное превращение одних свободных радикалов в другие и образование продуктов реакции. Реакция заканчивается обрывом цепи последовательных превращений, представляющим собой, как правило, рекомбинацию радикалов.
Процесс ускоряется при введении в систему специальных веществ — инициаторов, легко образующих свободные радикалы. В качестве инициаторов обычно используют пероксиды. С другой стороны, для замедления процесса вводят добавки иного рода — ингибиторы, которые приводят к обрыву цепей. Наиболее распространенными ингибиторами являются соединения класса фенолов и аминов, а также серосодержащие соединения.
При окислении многокомпонентной системы наряду с реакциями окисления, характерными для индивидуальных углеводородов, протекают различные перекрестные реакции продолжения и обрыва цепи. Вероятность практически бесконечных комбинаций элементарных стадий процесса окисления остатков перегонки нефти и возможность присутствия ингибиторов окисления, а также, присущий ингибиторам эффект синергизма не позволяют детально описать весь процесс.
Вместе с тем для решения многих задач приемлемо упрощенное представление, в соответствии с которым процесс окисления характеризуется следующими превращениями: углеводороды→смолы→асфальтены. Учитывая специфическую роль этих групп, составляющих битум, можно задать условия получения и предсказать свойства получающихся битумов.
Распределение кислорода в реакциях окисления. Взаимодействующий с нефтяным сырьем кислород воздуха расходуется в различных реакциях окисления. Часть кислорода образует воду и диоксид углерода, остальное количество химически связывается компонентами сырья; содержание кислорода в битуме составляет 1—2% (масс).
Распределение кислорода между битумом и газом зависит от температуры окисления и природы сырья. При повышении температуры процесса и уменьшении ароматизованности гудрона количество кислорода в окисленном битуме уменьшается. Распределение кислорода в различных реакциях окисления подробно изучено Д. Гоппелем и Д. Кнотнерусом.