Биосинтез и биохимические превращения аминокислот

Автор работы: Пользователь скрыл имя, 29 Августа 2013 в 10:00, реферат

Краткое описание

Процесс пищеварения включает несколько ступеней, вводящих в работу различные энзимы и желудочные соки по мере надобности. Когда одна группа заканчивает свои функции, в работу вступает другая, и так далее до момента, пока не произойдет полное усвоение. Однако, если перекусывать в промежутках между основными приемами пищи, в работу вступают те энзимы, чей черед еще не наступил, а эффективность работы энзимов, которые еще не закончили свое дело, снижается.

Прикрепленные файлы: 1 файл

химия распечатать.docx

— 73.69 Кб (Скачать документ)

ОБМЕН БЕЛКОВ

После расщепления белков в пищеварительном тракте образовавшиеся аминокислоты всасываются в кровь. В кровь всасывается также незначительное количество полипептидов - соединений, состоящих из нескольких аминокислот. Из аминокислот клетки нашего тела синтезируют белок, причем белок, который образуется в клетках человеческого организма, отличается от потребленного белка и характерен для человеческого организма.  
Образование нового белка в организме человека и животных идет беспрерывно, так как в течении всей жизни взамен отмирающих клеток крови, кожи, слизистой оболочки, кишечника и т. д. создаются новые, молодые клетки. Для того чтобы клетки организма синтезировали белок, необходимо, чтобы белки поступали с пищей в пищеварительный канал, где они подвергаются расщеплению на аминокислоты, и уже из всосавшихся аминокислот будет образован белок.  
Если же, минуя пищеварительный тракт, ввести белок непосредственно в кровь, то он не только не может быть использован человеческим организмом, он вызывает ряд серьезных осложнений. На такое введение белка организм отвечает резким повышением температуры и некоторыми другими явлениями. При повторном введении белка через 15-20 дней может наступить даже смерть при параличе дыхания, резком нарушение сердечной деятельности и общих судорогах.  
Белки не могут быть заменены какими-либо другими пищевыми веществами, так как синтез белка в организме возможен только из аминокислот.  
Для того чтобы в организме мог произойти синтез присущего ему белка, необходимо поступление всех или наиболее важных аминокислот.  
Из известных аминокислот не все имеют одинаковую ценность для организма. Среди них есть аминокислоты, которые могут быть заменены другими или синтезированными в организме из других аминокислот; наряду с этим есть и незаменимые аминокислоты, при отсутствии которых или даже одной из них белковый обмен в организме нарушается.  
Белки не всегда содержат все аминокислоты: в одних белках содержится большее количество необходимых организму аминокислот, в других - незначительное. Разные белки содержат различные аминокислоты и в разных соотношениях.  
Белки, в состав которых входят все необходимые организму аминокислоты, называются полноценными; белки, не содержащие всех необходимых аминокислот, являются неполноценными белками.  
Для человека важно поступление полноценных белков, так как из них организм может свободно синтезировать свои специфические белки. Однако полноценный белок может быть заменен двумя или тремя неполноценными белками, которые, дополняя друг друга, дают в сумме все необходимые аминокислоты. Следовательно, для нормальной жизнедеятельности организма необходимо, чтобы в пище содержались полноценные белки или набор неполноценных белков, по аминокислотному содержанию равноценных полноценным белкам.  
Поступление полноценных белков с пищей крайне важно для растущего организма, так как в организме ребенка не только происходит восстановление отмирающих клеток, как у взрослых, но и в большом количестве создаются новые клетки.  
Обычная смешанная пища содержит разнообразные белки, которые в сумме, обеспечивают потребность организма в аминокислотах. Важна не только биологическая ценность поступающих с пищей белков, но и их количество. При недостаточном количестве белков нормальный рост организма приостанавливается или задерживается, так как потребности в белке не покрываются из-за его недостаточного поступления.  
К полноценным белкам относятся преимущественно белки животного происхождения, кроме желатины, относящейся к неполноценным белкам. Неполноценные белки - преимущественно растительного происхождения. Однако некоторые растения (картофель, бобовые и др.) содержат полноценные белки. Из животных белков особенно большую ценность для организма представляют белки мяса, яиц, молока и др.

 

IV. БЕЛКИ

1. Свойства аминокислот

Особо важное место среди низкомолекулярных  природных органических соединений принадлежит аминокислотам. Они  являются производными карбоновых кислот, где один из атомов водорода в углеводородном радикале кислоты замещен на аминогруппу, располагающуюся, как правило, по соседству  с карбоксильной группой. Многие аминокислоты являются предшественниками  биологически активных соединений: гормонов, витаминов, алкалоидов, антибиотиков и  др.

Подавляющее большинство аминокислот  существует в организмах в свободном  виде. Но несколько десятков из них  находятся в преимущественно  связанном состоянии, т.е. в соединении с другими органическими веществами: b-аланин, например, входит в состав ряда биологически активных соединений, а многие a-аминокислоты — в состав белков. Таких a-аминокислот насчитывается 18. В состав белков также входят два амида аминокислот — аспарагин и глутамин. Эти аминокислоты получили название белковых или протеиногенных. Именно они составляют важнейшую группу природных аминокислот, так как только им присуще одно замечательное свойство — способность при участии ферментов присоединяться по аминным и карбоксильным группам и образовывать полипептидные цепи.

Искусственно синтезированные w-аминокислоты служат сырьем для производства химических волокон.

2. Свойства белков

Особенно характерен для белков 15-18 % уровень содержания азота. На заре белковой химии, когда не умели еще  определять ни молекулярную массу белков, ни их химический состав, ни тем более  структуру белковой молекулы, этот показатель играл большую роль при  решении вопроса о принадлежности высокомолекулярного вещества к  классу белков. Естественно, что сейчас данные об элементарном составе белков утратили свое былое значение для  их характеристики.

Белки вступают во взаимодействие с  самыми различными веществами. Объединяясь  друг с другом или нуклеиновыми кислотами, полисахаридами и липидами, они образуют рибосомы, митохондрии, лизосомы, мембраны эндоплазматической сети и другие субклеточные структуры, в которых благодаря  пространственной организации белков и свойственной ряду из них ферментативной активности осуществляются многообразные  процессы обмена веществ. Поэтому именно белки играют выдающуюся роль в явлениях жизни. По своей химической природе  белки являются гетерополимерами протеиногенных аминокислот. Их молекулы имеют вид длинных цепей, которые состоят из аминокислот, соединенных пептидными связями.

В самых маленьких полипептидных  цепях белков содержится около 50 аминокислотных остатков. В самых больших —  около 1500.

В настоящее время первичная  структура белка выявлена примерно у 2 тысяч белков. У инсулина, рибонуклеазы, лизоцима и гормона роста она подтверждена путем химического синтеза.

Белки составляют важнейшую часть  пищи человека. В наше время 10-15 % населения  Земли голодают, а 40 % получают неполноценную  пищу с недостаточным содержанием  белка. Поэтому человечество вынуждено  индустриальным путем производить  белок — наиболее дефицитный продукт  на Земле. В качестве заменителя белка  перспективно также промышленное производство незаменимых аминокислот.

3. Белковый обмен

У животных и человека белковый обмен  слагается из трех основных этапов: 1) гидролитического распада азотосодержащих  веществ в желудочно-кишечном тракте и всасывание образовавшихся продуктов; 2) превращение этих продуктов в  тканях, приводящее к образованию  белков и аминокислот; 3) выделение  конечных продуктов белкового обмена из организма.

Во взрослом организме в норме  количество синтезируемого белка равно  суммарному количеству распадающихся  тканевых и пищевых белков (в сутки, т.е. азотистый баланс близок к нулю). Такое состояние называется белковым равновесием. Белковое равновесие является динамическим, так как в организме  практически не создается запаса белков, и равновесие может устанавливаться  при различных количествах потребляемого  белка (в определенных пределах). В  период роста или восстановления сил после болезни (белкового  голодания) в организме наблюдается  интенсивная задержка азота, азотистый  баланс становится положительным. Основные процессы, связанные с белковым обменом, — дезаминирование аминокслот, взаимопревращение аминокислот, протекающее с переносом аминогрупп (переаминирование), аминирование кетокислот, распад белка на аминокислоты и новообразования белков органов и тканей, в том числе белков ферментов.

УГЛЕВОДЫ СТРОЕНИЕ, СВОЙСТВА И ФУНКЦИИ

Углеводы или сахариды - одна из основных групп органических соединений организма. Они представляют собой  первичные продукты фотосинтеза  и исходные продукты биосинтеза других веществ в растениях ( органические кислоты, аминокислоты), а также содержатся в клетках всех других живых организмов. В животной клетке содержание углеводов колеблется в пределах 1-2%, в растительной оно может достигать в некоторых случаях 85-90% массы сухого вещества.  
Углеводы состоят из углерода, водорода и кислорода, причем у большинства углеводов водород и кислород содержатся в том же соотношении, что и в воде ( отсюда их название - углеводы). Таковы, например, глюкоза С6Н12О6 или сахароза С12Н22О11. В состав производных углеводов могут входить и другие элементы. Все углеводы делятся на простые (моносахариды) и сложные (полисахариды).  
Среди моносахаридов по числу углеродных атомов различают триозы (3С), тетрозы (4С), пентозы (5С), гексозы (6С) и гептозы (7С). Моносахариды с пятью и более атомами углерода, растворяясь в воде, могут приобретать кольцевую структуру. В природе наиболее часто встречаются пентозы ( рибоза, дезоксирибоза, рибулоза) и гексозы ( глюкоза, фруктоза, галактоза). Рибоза и дезоксирибоза играют важную роль в качестве составных частей нуклеиновых кислот и АТФ. Глюкоза в клетке служит универсальным источником энергии. С превращением моносахаридов связаны не только обеспечение клетки энергией, но и биосинтез многих других органических веществ, а также обезвреживание и выведение из организма ядовитых веществ, проникающих извне или образующихся в процессе обмена веществ, например, при распаде белков.  
Ди- и полисахариды образуются путем соединения двух и более моносахаридов, таких, как глюкоза галактоза маноза, арабиноза или ксилоза. Так, соединяясь между собой с выделением молекулы воды, две молекулы моносахаридов образуют молекулу дисахарида. Типичными представителями этой группы веществ являются сахароза ( тростниковый сахар), мальтаза (солодовый сахар), лактоза (молочный сахар). Дисахариды по своим свойствам близки к моносахаридам. Например, и те, и другие хорошо растворимы в воде и имеют сладкий вкус. К числу полисахаридов принадлежит крахмал, гликоген, целлюлоза, хитин, каллоза и др.  
Основная роль углеводов связана с их энергетической функцией. При их ферментативном расщеплении и окислении выделяется энергия, которая используется клеткой. Полисахариды играют главным образом роль запасных продуктов и легко мобилизуемых источников энергии ( например, крахмал и гликоген), а также используются в качестве строительного материала ( целлюлоза, хитин). Полисахариды удобны в качестве запасных веществ по ряду причин: будучи нерастворимы в воде, они не оказывают на клетку ни осмотического, ни химического влияния, что весьма важно при длительном хранении их в живой клетке: твердое, обезвоженное состояние полисахаридов увеличивает полезную массу продуктов запаса за счет экономии их объема. При этом существенно уменьшается вероятность потребления этих продуктов болезнетворными бактериями и другими микроорганизмами, которые, как известно, не могут заглатывать пищу, а всасывают вещества всей поверхностью тела. И наконец, при необходимости запасные полисахариды легко могут быть превращены в простые сахара путем гидролиза.

ОБМЕН УГЛЕВОДОВ

Углеводы, как уже говорилось выше, играют очень важную роль в организме, являясь основным источником энергии. Углеводы поступают к нам в  организм в виде сложных полисахаридов - крахмала, дисахаридов и моносахаридов. Основное количество углеводов поступает  в виде крахмала. Расщепившись до глюкозы, углеводы всасываются и через  ряд промежуточных реакций распадаются  на углекислый газ и воду. Эти  превращения углеводов и окончательное  окисление сопровождаются освобождением  энергии, которая и используется организмом.  
Расщепление сложных углеводов - крахмала и солодового сахара, начинается уже в полости рта, где под влиянием птиалина и мальтазы крахмал расщепляется до глюкозы. В тонких кишках все углеводы расщепляются до моносахаридов.  
Угле воды всасываются преимущественно в виде глюкозы и только отчасти в виде других моносахаридов ( галактозы, фруктозы). Их всасывание начинается уже в верхних отделах кишечника. В нижних отделах тонких кишок в пищевой кашице углеводов почти не содержится. Углеводы через ворсинки слизистой оболочки, к которым подходят капилляры, всасываются в кровь, и с кровью, оттекающей от тонкого кишечника, попадают в воротную вену. Кровь воротной вены проходит через печень. Если концентрация сахара в крови человека равна 0,1%, то углеводы проходят печень и поступают в общий кровоток.  
Количество сахара в крови все время поддерживается на определенном уровне. В плазме содержание сахара составляет в среднем 0,1%. В сохранении постоянного уровня сахара в крови большую роль играет печень. При обильном поступлении сахара в организм его излишек откладывается в печени и вновь поступает в кровь, когда содержание сахара в крови падает. В печени углеводы содержатся в виде гликогена.  
При употреблении в пищу крахмала уровень сахара в крови заметным изменениям не подвергается, так как расщепление крахмала в пищеварительном тракте длятся продолжительное время и образовавшиеся при этом моносахариды всасываются медленно. При поступлении значительного количества (150-200г) обычного сахара или глюкозы уровень сахара в крови резко повышается.  
Такое повышение сахара в крови называется пищевой или алиментарной гипергликемией. Избыток сахара выводится почками, и в моче появляется глюкоза.  
Выведение сахара почками начинается в том случае, когда уровень сахара в крови составляет 0,15-0,18%. Такая алиментарная гипергликемия наступает обычно после употребления большого количества сахара и вскоре проходит, не вызывая каких-либо нарушений в деятельности организма.  
Однако при нарушении внутрисекреторной деятельности поджелудочной железы наступает заболевание, известное под названием сахарной болезни или сахарного диабета. При этом заболевании уровень сахара в крови повышается, печень теряет способность заметно удерживать сахар, и начинается усиленное выделение сахара с мочой.  
Гликоген откладывается не только в печени. Значительное его количество содержатся также в мышцах, где он потребляется в цепи химических реакций, протекающих в мышцах при сокращении.  
При физической работе потребление углеводов усиливается, и их количество в крови увеличивается. Повышенная потребность в глюкозе удовлетворяется как расщеплением гликогена печени на глюкозу и поступлением последней в кровь, так и гликогеном, содержащимся в мышцах.  
Значение глюкозы для организма не исчерпывается ее ролью как источника энергии. Этот моносахарид входит в состав протоплазмы клеток и, следовательно, необходим при образовании новых клеток, особенно в период роста. Большое значение имеет глюкоза в деятельности центральной нервной системы. Достаточно, чтобы концентрация сахара в крови понизилась до 0,04%, как начинаются судороги, теряется сознание и т.д.; иначе говоря, при понижении сахара в крови в первую очередь нарушается деятельность центральной нервной системы. Достаточно такому больному ввести в кровь глюкозу или дать поесть обычного сахара, как все нарушения исчезают. Более резкое и длительное понижение уровня сахара в крови - гипогликемия, может повлечь за собой резкие нарушения деятельности организма и привести к смерти.  
При небольшом поступлении углеводов с пищей они образуются из белков и жиров. Таким образом, полностью лишить организм углеводов не удается, так как они образуются и из других пищевых веществ.

II. УГЛЕВОДЫ

1. Общие свойства углеводов

Углеводы — группа органических веществ общей формулы — Cm H2n On. Формально Cm(H2O) n — соединение углерода и воды. Отсюда и название: углеводы.

Основные функции углеводов:

1) энергетическая (при окислении  простых сахаров, в первую очередь,  глюкозы организм получает основную  часть необходимой ему энергии) ;

2) запасающая (такие полисахариды, как крахмал и глюкоген, играют роль источников глюкозы, высвобождая ее по мере необходимости) ;

3) опорно-строительная (из хитина, например, построен панцирь насекомых).

Углеводы делят на простые или  моносахариды, не способные к гидролизу, и сложные углеводы, гидролизующиеся на ряд простых. По числу атомов углерода углеводы делят на тетрозы, пентозы, гексозы и т.д., а по химическому строению — это многоатомные альдегидо — и кетоноспирты — альдозы и кетозы. Наибольшее значение для питания имеют гекзозы. Сложные углеводы по количеству получающихся при гидролизации простых углеводов делят на дисахариды, трисахариды и т.д. и полисахариды, дающие при гидролизе много атомов простых углеводов. Полисахариды делят на гомополисахариды, которые дают при гидролизе один вид простых углеводов и гетеросахариды, которые дают при гидролизе смесь простых углеводов и их производных.

2. Свойства моносахаридов.

Моносахариды — бесцветные кристаллические  вещества, хорошо рстворимые в воде, плохо — в спирте, нерастворимые в эфире. Моносахариды — основной источник энергии в организме человека.

Самый важный моносахарид — глюкоза. Название произошло от греческого — glykys — сладкий. Химическая формула — C6H12O6. Молекулы глюкозы выполняют роль биологического топлива в одном из важнейших энергетических процессов в организме — в процессе гликолиза. В пентозном цикле глюкоза окисляется до СO2 и воды, генерируя энергию для некоторых реакций. В природе встречается D — глюкоза.

Глюкоза очень легко окисляется оксидами и гидроксидами тяжелых металлов. Полное окисление глюкозы идет по уравнению:

C6H12O6 + 6O2 = 6CO2 + 6 H2O + 686 ккал.

Значительная часть выделенной энергии аккумулируется в АТФ. Постоянный источник глюкозы в организме  — гликоген. В растворах глюкоза  существует в виде пяти таутомерных форм — a — и b-глюкоприраноз с шестичленным кольцом, a — и b-глюкофураноз с пятичленным кольцом, а также в виде открытой формы со свободной альдегидной группой. a — и b-формы отличаются простраственным расположением полуацетального гидроксида.

Недостаток глюкозы вызывает ацидоз и кетоз. Избыток — диабет. Норма содержания в крови — 0,1 %.

3. Свойства дисахаридов

Основным представителем дисахаридов  является сахароза. Молекула сахарозы состоит из остатков молекулы D-глюкозы  и D-фруктозы. Химическая формула — C12H22O11. Сахароза — один из главных углеводов в организме человека, бесцветное кристаллическое вещество. При температуре выше 200є C разлагается с образованием так называемых карамелей. Сахароза не растворима в неполярных органических растворителях, в абсолютном метаноле и этаноле, умеренно растворима в атилацетате, анилине, в водных растворах метанола и этанола. Хорошо растворима в воде. Сахароза не обладает редуцентными свойствами, поэтому она устойчива к действию щелочей, но гидрализуется под влиянием кислот и ферментов сахараз с образованием D — глюкозы и D-фруктозы. Со щелочным металлами образует сахараты. Сахароза является одним из основных дисахаридов. Она гидролизуется HCl желудочного сока и сахаразой слизистой оболочкой тонкой кишки человека.

Информация о работе Биосинтез и биохимические превращения аминокислот