Автор работы: Пользователь скрыл имя, 14 Октября 2013 в 23:00, реферат
Аналитикалық геометрия – геометрияның қарапайым геометрия бейнелерді (түзулер, жазықтықтар, қисықтар, екінші реттік беттер) координаттар әдістерінің негізінде алгебралық амалдар арқылы зерттейтін бөлімі.
Координаттар әдісінің пайда болуы 17 ғ-да астрономия, механика және техника ғылымдарының дамуымен тығыз байланысты. Координаттар әдісі мен аналитикалық геометрияның негіздері Р.Декарттың «Геометриясында» (1637) мейлінше толық және анық баяндалған. Бұл әдістің басты идеялары оның замандасы П.Фермаға да белгілі болған. Аналитикалық геометрияның бұдан әрі дамуына Г.Лейбниц, И.Ньютон және Л.Эйлер зор үлес қосқан. Аналитикалық геометрияның тұжырымдарын Ж.Лагранж аналитикалық механика, ал Г.Монж дифференциалдық геометрия негіздерін қалау барысында пайдаланған.
Аналитикалық геометрия – геометрияның қарапайым геометрия бейнелерді (түзулер, жазықтықтар, қисықтар, екінші реттік беттер) координаттар әдістерінің негізінде алгебралық амалдар арқылы зерттейтін бөлімі.
Координаттар әдісінің пайда болуы 17 ғ-да астрономия, механика және техника ғылымдарының дамуымен тығыз байланысты. Координаттар әдісі мен аналитикалық геометрияның негіздері Р.Декарттың «Геометриясында» (1637) мейлінше толық және анық баяндалған. Бұл әдістің басты идеялары оның замандасы П.Фермаға да белгілі болған. Аналитикалық геометрияның бұдан әрі дамуына Г.Лейбниц, И.Ньютон және Л.Эйлер зор үлес қосқан. Аналитикалық геометрияның тұжырымдарын Ж.Лагранж аналитикалық механика, ал Г.Монж дифференциалдық геометрия негіздерін қалау барысында пайдаланған.
Координаттар әдісінің мәні – жазықтықта орналасқан кез келген М(х,у) нүктесін декарттық координаттар жүйесі арқылы анықтауға болатындығында. х және у шамалары Оху жүйесіндегі М нүктесінің декарттық тік бұрышты координаттары (не қысқаша тік бұрышты координаттар) деп аталады. Осыған сәйкес оларды М нүктесінің абсциссасы (х) және ординатасы (у) деп атайды.
Жазықтықтағы координаттар әдісінің негізгі идеясы – L сызығының геом. қасиеттерін осы сызықты сипаттайтын Ғ (х, у) = 0 теңдеуін аналит. және алгебр. жолмен зерттеу. Жазықтықтағы А. г-да 1- және 2-реттік алгебр. сызықтар жүйелі түрде зерттеледі. 1-реттік сызықтар – түзу сызықтар және олар бір дәрежелі Ах + Ву + С = 0 алгебр. теңдеуімен, ал 2-реттік қисық сызықтар Ах2 + Вху + Су2 + Dх + Еу + Ғ = 0 теңдеуімен сипатталады. 2-реттік қисық сызықтарға эллипс, гипербола, парабола қисықтары жатады. Табиғатта өте жиі кездесетін бұл қисықтардың негізгі қасиеттері А. г-да толық анықталған. Кеңістіктегі А. г-да координаттар әдісі жазықтықтағы әдіске толық ұқсас етіп қарастырылады. Мұнда кез келген М нүктесі х – абсцисса, у – ордината және z – аппликата координаттары арқылы анықталады. Кеңістікте орналасқан S бетін Oxyz координаттар жүйесіне қатысты F = (x, y, z) = 0 теңдеуімен сипаттауға болады. Кеңістіктегі А. г-да Ах + Ву + Сz + D = 0 теңдеуімен анықталатын 1-реттік беттердің (жазықтықтардың) және Ах2 + Ву2 + Сz2 + Dху + Еуz + Ғхz + Gх + Ну + Мz + N = 0 теңдеуімен анықталатын 2-реттік беттердің (эллипсоидтың, гиперболоидтың, параболоидтың) қасиеттері зерттеледі.