Автор работы: Пользователь скрыл имя, 03 Октября 2013 в 11:27, реферат
Целью настоящей работы является определение возможностей одного из современных методов анализа РФА (с использованием способа стандарта-фона, на спектрометре ARL ADVANT’X) для одновременного определения таких элементов как Sr, Nb, Rb в литий-фтористых редкометальных гранитах со сложными матрицами.
Введение
1. Литературный обзор
1.1 Методы определения рубидия, стронция и ниобия
1.1.1 Определение стронция
1.1.2 Определение Рубидия
1.1.3 Определение Ниобия
Выводы
1.2 Основы рентгенофлуоресцентного анализа
1.2.1 Матричные эффекты
1.2.2 Способ стандарта-фона
1.3 Рентгенофлуоресцентное определение редких элементов Sr, Rb, Nb
1.4 Применение Sr, Rb, Nb
Литература
Российский государственный геологоразведочный университет
Реферат на тему: «рентгенофлуоресцентный анализ»
Выполнила студентка группы ЗРМ-09 л
Савенко С.В.
2013 г.
Оглавление
Введение
1. Литературный обзор
1.1 Методы определения рубидия, стронция и ниобия
1.1.1 Определение стронция
1.1.2 Определение Рубидия
1.1.3 Определение Ниобия
Выводы
1.2 Основы рентгенофлуоресцентного анализа
1.2.1 Матричные эффекты
1.2.2 Способ стандарта-фона
1.3 Рентгенофлуоресцентное определение редких элементов Sr, Rb, Nb
1.4 Применение Sr, Rb, Nb
Литература
Введение
Научный и практический интерес
к литий-фтористым
Целью настоящей работы является определение возможностей одного из современных методов анализа РФА (с использованием способа стандарта-фона, на спектрометре ARL ADVANT’X) для одновременного определения таких элементов как Sr, Nb, Rb в литий-фтористых редкометальных гранитах со сложными матрицами.
1. Литературный обзор
1.1 Методы определения рубидия, стронция и ниобия
В данной главе будет представлен ряд методов используемых при анализе Sr, Rb, Nb, которые будут рассмотрены с точки зрения следующих характеристик:
-Чувствительность
-Селективность
-Предел обнаружения
-Экспрессность
-Воспроизводимость полученных результатов
-Возможность частичной или полной автоматизации
-Стоимость оборудования и реагентов
1.1.1 Определение стронция
Спектрофотометрические методы определения
Данные методы можно разделить на прямые и косвенные.
Прямые методы основаны на реакциях образования окрашенных соединений при действии реактивов на ионы стронция. В косвенных методах стронций осаждается в виде труднорастворимого соединения с окрашенным реактивом, присутствующим в избытке, осадок отделяют и по количеству несвязанного реактива определяют концентрацию стронция в пробе.
Примеры прямых методов определения:
Определение стронция нитроортаниловым С (нитрохромазо) или ортаниловым С Мешают определению барий, свинец (2), давая с реагентом цветную реакцию; цирконий, титан, талий и некоторые другие элементы приводят к резкому занижению результатов. Чувствительность ≤0,05 мкг/мл.
Определение стронция с диметилсульфаназо III и диметилсульфаназо
Элементы III-VI их групп должны быть удалены. Количество аммонийных солей и щелочных металлов должно быть не более 10 мг. Сульфаты и фосфаты мешают, если их больше 0,03 ммоля. Определению мешают многие металлы, в том числе Са и Mg, если их содержание в пробе ≥ 0,3 мкмоля, а Cu (II) ≥0,25 мкмоля. Также много и других ограничений.
Определение стронция с карбоксинитразо. Реакция стронция с карбоксинитразо является одной из наиболее чувствительных. С помощью этой реакции определяют 0,08-0,6 мкг/мл.
Косвенные методы определения стронция
Ввиду свое малой селективности косвенные методы не находят применение в настоящее время, поэтому будут лишь упомянуты:
-8-Оксихинолиновый метод
-Метод с использованием пикролоновой кислоты
-Определение стронция с помощью хромата
- Электрохимические методы:
-Полярографический метод
Определению стронция мешают ионы бария (но это можно устранить подбором подходящего фона которым является (C2H5) 4NBr в абсолютном этаноле). В присутствии приблизительно равных концентраций Mg и Ca определение Sr невозможно. Следует предварительно отделять Ba, Ca, Na, K если их концентрации существенно превосходят концентрацию Sr.
Дифференциальный
Даёт возможность определять малые количества стронция в присутствии больших количеств Na и К. Чувствительность - 0,0001 моль Sr /моль соли.
Инверсионная полярография.
Позволяет определить стронций в очень малых концентрациях (10-5 - 10-9 М), если его сначала сконцентрировать в капле ртути путём электролиза, а затем подвергнуть её анодному растворению. Используется осциллографическая техника. Средняя ошибка составляет 3-5%.
Кондуктометрический метод.
Определения ведётся после предварительного отделения группы элементов Li, K, Na, Ca и Ba, входящих в растворимые соли строительных материалов.
c) Спектральные методы:
Спектрографический (искровой и дуговой) метод.
Наиболее интенсивные линии Sr лежат в видимой области спектра: 4607,33; 4077,71 и 4215,52 Ǻ, причём 2 последние находятся в области циановых полос. Поэтому при использовании для анализа дуги с угольными электродами эти линии менее пригодны. Линия 4607,33 Ǻ отличается сильным самопоглощением, поэтому рекомендуется использовать её при определении лишь малых концентраций Sr (ниже 0,1%). При высоких его содержаниях используются линии Sr 4811,88 и 4832,08 Ǻ, а также 3464,46 Ǻ. В ультрафиолетовой области спектра используются значительно более слабые линии 3464,46 и 3380,71 Ǻ, последняя из них расположена в области спектра, обладающего фоном. Для стабилизации температуры горения дуги, устранения влияния Са, Mg, Na и достижения более высокой точности определения Sr используют буферные смеси. Для устранения полос циана определение Sr проводят в аргоне либо переводят пробы во фтористые соединения. Чувствительность определения Sr в дуге составляет 5*10-5 - 1*10-4%, относительная ошибка определения ±4-15%.
Применение импульсного
Чувствительность определения Sr в искре составляет (1-5) *10-4%. Ошибка определения ±4-6%. C целью повышения точности и абсолютной чувствительности анализа, а также устранения влияния мешающих линий посторонних элементов, предложено использовать интерферометр, скрещенный со спектографом.
Эмиссионная фотометрия пламени.
Благодаря своей простоте и надёжности пламеннофотометрический метод определения стронция находит широкое применение, особенно при анализе горных пород и минералов, природных и сточных вод, биологических и других материалов. Он пригоден для определения как малых, так и больших содержаний элемента с достаточно высокой точностью (1-2 отн.%) и чувствительностью, причём в большинстве случаев определение стронция может быть выполнено без отделения от других элементов.
Наиболее высокая
При импульсном методе испарения абсолютный предел обнаружения Sr составляет 1*10-13-2*10-12 г (пламя смеси ацетилен-закись азота). При достаточно больших количествах пробы (~10 мг) относительный предел определяемого содержания стронция снижается до 1*10-7%, в то время как при введении раствора пробы в пламя с помощью распылителя он равен 3*10-5%.
Атомно-абсорбционная
Определение Sr производится путём измерения поглощения света его атомами. Наиболее часто используются линия стронция 460,7 нм, с меньшей чувствительностью стронций может быть определён по линиям 242,8; 256,9; 293,2; 689,3 нм. При использовании высокотемпературных пламён стронций можно определять также по ионной линии 407,8 (ионно-абсорбционная спектроскопия).
Различают два вида помех в данном методе анализа. Первый вид помех связан с образованием труднолетучих соединений и проявляется в пламени смеси ацетилена с воздухом. Наиболее часто отмечается влияние катионов Al, Ti, Zr, и других анионов PO4 и SiO3.
Другой вид помех - вследствие ионизации атомов стронция, например за счёт влияния Са и Ba, увеличения атомного поглощения от присутствия Na и К и др.
Чувствительность обнаружения стронция 1*10-4-4*10-12 г.
d) Активационный метод.
Наибольшее распространение
Применение γ-спектрометра с высоким разрешением позволяет повысить точность метода и сократить число операций по отделению, так как возможно определение Sr в присутствии ряда посторонних элементов. Чувствительность обнаружения стронция около 6*10-5 г/г.
e) Масс-спектрометрический метод.
Масс-спектроскопия
1.1.2 Определение Рубидия
a) Спектрофотометрические методы определения
Фотометрическое определение рубидия
основано на образовании им окрашенных
соединений (преимущественно
b) Электрохимические методы:
Также как и фотометрические, не
относятся к категории
Несмотря на большое разнообразие
электрохимических методов, определение
рубидия производят преимущественно
методами полярографии и электрохимических
индикаторов (потенциометрическое
и кондуктометрическое
Чувствительность и ошибки метода: Обычным полярографическим методом с использованием ртутно капающего электрода можно определять рубидий уже при содержании его в растворе 7*10-5-1*10-3 г-ион/л. Чувствительность метода амальгамной полярографии с накоплением составляет 8*10-6-5*10-5 г-ион/л.
Потенциометрическое титрование.
При потенциометрическом
Кондуктометрическое и высокочастотное титрование
Главное преимущество высокочастотного
титрования - отсутствие электродов в
анализируемом растворе. Определение
рубидия высокочастотным
c) Спектральные методы:
Данные методы определения рубидия
входят в группу физических методов
анализа, характеризующихся высокой
чувствительностью и
Оптический эмиссионный анализ.
Данный вид анализа позволяет в используемой области спектра (400-900 нм) определять почти без предварительной химической обработки пробы одновременно с рубидием значительное число и других элементов. В зависимости от условий проведения анализа (вид пробы, источник возбуждения) различают собственно эмиссионный анализ и пламенную фотометрию. Первый из перечисленных практически не используется, однако продолжает оставаться надёжным и простым средством обнаружения и определения рубидия.
Эмиссионный анализ.
Рубидий имеет простые и легко возбудимые спектры атомов. Самые интенсивные линии рубидия находятся в инфракрасной области спектра (они максимально свободны от наложения линий других элементов).
В настоящее время
Пламенная фотометрия.
Этот метод обеспечивает надёжное определение рубидия в пределах 10-4% (навеска 5 г, точность ±20%), обладает большой простотой, достаточной экспрессностью и воспроизводимостью. Используя угольный микрозонд, вводимый в воздушно-ацетиленовое пламя, можно увеличить абсолютный предел чувствительности до 5*10-13 гр (Rb 780,0 нм). При этом анализируемая проба раствора наносится из микропипетки на кончик микрозонда. Такая чувствительность позволяет определять до 1*10-6 - 1*10-7% Rb в пробе массой 10 г.
Атомно-абсорбционная
Данный метод уступает по своей простоте предыдущему. К числу достоинств атомно-абсорбционного метода следует прежде всего отнести отсутствие взаимного наложения резонансных линий калия, рубидия, а также наложения на спектральные линии рубидия молекулярных спектров излучения оксидов железа и щелочноземельных элементов; чрезвычайно малый фон, менее жёсткие требования к юстировке выходных щелей спектрометров, качеству приёмников излучения и т.д. Кроме того, в атомно-абсорбционном методе с увеличением толщины поглощающего слоя (ширины пламени) возрастает чувствительность определения.