Автор работы: Пользователь скрыл имя, 28 Января 2015 в 20:30, курсовая работа
Целью работы является создание планово-высотного обоснования при строительстве и изысканиях, при съемке стройплощадки, а также данной территории.
Данная курсовая работа представляет собой комплекс геодезических работ при строительстве и изысканиях промышленной площадки, так как разбивка сооружений является основным видом геодезических работ при вынесении проекта в натуру. Этот вид работ требует тщательных геодезических измерений и высокой точности геодезической основы.
Вывод. В результате предрасчета точности:
СКО превышения одиночного нивелирного хода mh < mпред (21,00мм < 39,12мм), а также СКО превышения на 1 км хода равен 5,49мм < 10мм.
относительная СКО в нивелирной сети IV класса с 2 узловыми точками на 1 км хода по 1 узлу (I) = 1,78мм а по 2 узлу (II) = 1,83 не превышает допуск 6мм.
Из результатов вычислений видно, что запроектированная на карте
М 1:25000 одиночный нивелирный ход и нивелирования сеть IV класса удовлетворяет необходимую точность требований инструкции по построению нивелирования IV класса.
Съемочное обоснование развивается от пунктов плановых и высотных опорных сетей. На участках съемки площадью до 1 км2 съемочное обоснование может быть создано в виде самостоятельной геодезической опорной сети.
При построении съемочного обоснования одновременно определяют положение точек в плане и по высоте. Плановое положение точек съемочного обоснования определяют проложением теодолитных, тахеометрических ходов, построение аналитических сетей из треугольников и разного рода засечками. Высоты точек съемочного обоснования чаще всего определяют геометрическими и тригонометрическим нивелированием.
Самый распространенный вид съемочного обоснования – теодолитные ходы, опирающиеся на один или два исходных опирающихся не менее, чем на два исходных пункта. В системе ходов, в местах их пересечений, образуются узловые точки, в которых могут сходится несколько ходов. Длины теодолитных ходов зависят от масштаба съемки и условий снимаемой местности.
Углы поворота на точках ходов измеряют теодолитами со средней квадратической ошибкой 0,5» одним приёмом. Расхождение значений углов в полуприёмах допускают не более 0,8». Длину линий в ходах измеряют светодальномерами, мерными лентами или рулетками. Каждую сторону измеряют дважды – в прямом и обратном направлениям. Расхождение в измеренных значениях допускаются в пределах 1:2000 от измеряемой длины линии.
При определении высот точек съемочного обоснования геометрическим нивелированием невязка в ходе не должна превышать 5, тргонометрическим нивелированием - 20, где L – длина хода, км.
Точки съемочного обоснования, как правило, закрепляют на местности временными знаками: деревянными кольями, столбами, металическими штырями, трубами. Если эти точки предполагается использовать в дальнейшем, их закреплять постоянными знаками.
Построение планово-высотной сети было произведено, согласно инструкциям ранее.
Основы функционирования радионавигационных систем. Глобальные спутниковые системы определения местоположения разрабатывались военными ведомствами в целях навигационного обеспечения транспортных средств различных родов войск на суше, на воде и околоземном пространстве. Развитие спутниковых систем, совершенствование аппаратуры и повышение точности координатных определений явилось основой образования нового способа геодезических измерений – спутниковой геодезии. В спутниковом методе определения координат точек, а также приращений координат в качестве целей с известными координатами используются спутники.
Спутники вращаются вокруг нашей планеты по определённым орбитам и их пространственные координаты могут быть вычислены на любой интересующий
момент времени. Как известно, в настоящее время используются две спутниковые системы определения координат: это российская система ГЛОНАСС (ГЛОбальная Навигационная Спутниковая Система) и американская NAVSTAR GPS (Navigation System with Time And Ranging Global Positioning System – навигационная система определения расстояний и времени, глобальная система позиционирования). В ближайшие годы должны быть задействованы ещё две новые спутниковые навигационные системы – Galileo (Европейская) и Compass (Китайская). В основу определения координат точек местности по навигационным спутникам положен принцип пространственной линейной засечки, иначе трилатерации (рис. 1.1). Спутники при этом играют роль прецизионных опорных то-
чек. Как видно, описанная схема измерений предполагает наличие в околоземном пространстве на известных орбитах некоторого количества спутников, а в определяемой точке следует установить так называемый приёмник. Назначением
приёмников является приём, сбор и анализ сигналов, поступающих со спутников. Кроме указанных двух элементов в схеме спутниковых определений присутствует ещё один элемент – система управления и контроля над работой навигационных спутников. Таким образом, независимо от того какая навигационная система рассматривается ГЛОНАСС, GPS или Galileo, каждая из названных систем в принципе состоит из трёх сегментов: космического сегмента, наземного комплекса управ-
ления и контроля и геодезического сегмента потребителя.
Космический сегмент включает набор или «созвездие» спутников. Спутники вращаются на близких к круговым орбитах на расстоянии около 20000 км относительно земной поверхности. Для обеспечения возможности одновременных наблюдений не менее 4-х спутников в любой точке земного шара необходимо, чтобы общее количество входящих в «созвездие» спутников составляло не менее 24.
Угловые измерения в ходах полигонометрии на территориях городов осложняются комплексом внешних условий, влияющих на точность результатов. К ним относится:
наличие препятствий, ограничивающих длины сторон и выбор места для установки центров и приборов над ними в благоприятных для измерений условиях;
боковая рефракция;
неустойчивость прибора и визирных марок в результате сотрясений, вызванных работой механизмов в непосредственной близости от них и действием движущегося транспорта.
Наличие коротких сторон в полигонометрической сети заставляет очень точно центрировать теодолит и визирную марку. Средняя величина ошибки центрирования не должна превышать 0,5-0,7 мм. Такую точность центрирования можно обеспечить только хорошо выверенными оптическими центрирами.
Для ослабления влияния боковой рефракции и других источников ошибок из-за внешних условий следует стремится к тому, чтобы визирный луч в ходах полигонометрии проходил на расстоянии более 1 м от стены здания; располагать стороны хода на теневых сторонах улиц и производить измерения в пасмурную погоду; прекращать измерения во время работы механизмов, создающих мощные тепловые потоки, если визирный луч проходит вблизи этих потоков; тщательно закреплять прибор и визирные марки, установленные в зоне сотрясений от работы механизмов и транспорта, постоянно следить за их положением.
Для линейных измерений в инженерной полигонометрии наибольшее применение нашли светодальномеры и способы, основанные на косвенном определении расстояний. Наибольшее распространение получили малые светодальномеры отечественного и зарубежного производства, обеспечивающие точность измерения линий 5 – 10 мм.
Теодолиты Т2, 2Т2 применяются в полигонометрии 4 класса, 1 и 2 разрядов. На пунктах полигонометрии измерение улов выполняется способом круговых приемов или трехштативную систему. Способ трехштативной системы предусматривает выполнение при измерении следующего условия: ось вращения теодолита при установке его над центром знака должна занимать в пространстве то же самое положение, которое занимала ось вращения марки до и после установки теодолита.
Съемочное обоснование развивается от пунктов плановых и высотных опорных сетей. На участках съемки площадью до 1 км2 съемочное обоснование может быть создано в виде самостоятельной геодезической опорной сети.
При построении съемочного обоснования одновременно определяют положение точек в плане и по высоте. Плановое положение точек съемочного обоснования определяют проложением теодолитных, тахеометрических ходов, построение аналитических сетей из треугольников и разного рода засечками. Высоты точек съемочного обоснования чаще всего определяют геометрическими и тригонометрическим нивелированием.
Самый распространенный вид съемочного обоснования – теодолитные ходы, опирающиеся на один или два исходных опирающихся не менее, чем на два исходных пункта. В системе ходов, в местах их пересечений, образуются узловые точки, в которых могут сходится несколько ходов. Длины теодолитных ходов зависят от масштаба съемки и условий снимаемой местности.
Углы поворота на точках ходов измеряют теодолитами со средней квадратической ошибкой 0,5» одним приёмом. Расхождение значений углов в полуприёмах допускают не более 0,8». Длину линий в ходах измеряют светодальномерами, мерными лентами или рулетками. Каждую сторону измеряют дважды – в прямом и обратном направлениям. Расхождение в измеренных значениях допускаются в пределах 1:2000 от измеряемой длины линии.
При определении высот точек съемочного обоснования геометрическим нивелированием невязка в ходе не должна превышать 5, тргонометрическим нивелированием - 20, где L – длина хода, км.
Точки съемочного обоснования, как правило, закрепляют на местности временными знаками: деревянными кольями, столбами, металическими штырями, трубами. Если эти точки предполагается использовать в дальнейшем, их закреплять постоянными знаками.
Информация о работе Инженерно-геодезические изыскания для строительства промышленного комплекса