Геодезические сети

Автор работы: Пользователь скрыл имя, 11 Декабря 2013 в 18:48, реферат

Краткое описание

В теоретических исследованиях и практике геодезических работ особое внимание уделяется определению взаимного положения точек, как в плановом отношении, так и по высоте. Многолетний опыт выполнения такого рода работ позволил выработать основные принципиальные положения, которые следует неукоснительно соблюдать при организации геодезических измерений. Это позволяет свести к минимуму неизбежные ошибки, не допустить накопления погрешностей при переходе от точки к точке, полностью избавиться от грубых промахов.

Содержание

Введение
1. Устройство геодезических сетей при съемке больших территорий.
1.1 Государственные геодезические сети.
1.2 Геодезические сети сгущения.
1.3.Съёмочные сети.
2. Измерения в геодезических сетях.
2.1 Устройство и измерение углов теодолитом 3Т2КП.
2.2 Устройство светодальномера СТ-5 («Блеск») и измерение и расстояний.
2.3Устройство электронного тахеометра. Измерение им горизонтальных и вертикальных углов, расстояний, координат Х, У, Н точек местности.
2.4. Определение положения точек земной поверхности с помощью геодезических спутниковых систем.
3. Погрешности геодезических измерений (теория и решение задач).
3.1 Геодезическое измерение, результат измерения, методы и условия измерений. Равноточные и неравноточные измерения.
3.2 Классификация погрешностей геодезических измерений. Средняя квадратическая погрешность. Формы Гаусса и Бесселя для её вычисления.
3.3 Веса измерений
3.4 Функции по результатам измерений и оценка их точности.
3.5 Оценка точности по разностям двойных измерений и по невязкам в полигонах и ходах.
4. Определение дополнительных пунктов.
4.1 Цель и методы определения дополнительных пунктов.
4.2 Передача координат с вершины знака на землю. (Решение примера).
4.3 Решение прямой и обратной засечки (по варианту задания).
5. Уравнивание системы ходов съемочной сети.
5.1 Общее понятие о системах ходов и их уравнивании.
5.2 Упрощенное уравнение системы теодолитных ходов по варианту задания.
6. Тахеометрическая съёмка.
6.1 Нанесение съёмочных и реечных точек.
6.2 Интерполирование отметок пикетов и вычерчивание горизонталей.
6.3 Нанесение ситуации в условных знаках.
6.4 Оформление плана тахеометрической съёмки (по варианту задания).
Список литературы

Прикрепленные файлы: 1 файл

геодезия курсач.docx

— 132.65 Кб (Скачать документ)

Функция вида U = l1 + l2

Определить СКП U, где l1 и l2 – независимые слагаемые со случайными погрешностями ∆l1 и ∆l2. Тогда сумма U будет содержать погрешность:

∆U = ∆l1 + ∆l2.

Если каждую величину слагаемого измерить n раз, то можно представить:

∆U1 = ∆l1' + ∆l2' – 1-е измерение,

∆U2 = ∆l1" + ∆l2" – 2-е измерение,

…………………

∆Un = ∆l1(n) + ∆l2(n) – n-е измерение.

После возведения в квадрат  обеих частей каждого равенства  почленно их сложим и разделим на n:

∑∆U2 / n = (∑∆l12)/n + 2×(∑∆l1×∆l2)/n + (∑∆l22)/n.

Так как в удвоенном  произведении ∆l1 и ∆l2 имеют разные знаки, они компенсируются и делим на бесконечно большое число n, то можно пренебречь удвоенным произведением.

mU2 = ml12 + ml22;

mU = √( ml12 + ml22 ).

СКП суммы двух измеренных величин равна корню квадратному из суммы квадратов СКП слагаемых.

Если слагаемые имеют  одинаковую СКП, то:

ml1 = ml2 = m;

mU = √(m2 + m2) = √2m2 = m√2.

В общем случае:

mU = m√n,

где n – количество аргументов l.

Функция вида U = l1 - l2

mU = m√n;

mU = √( ml12 + ml22).

СКП разности двух измерений  величин равна корню квадратному из суммы квадратов СКП уменьшаемого и вычитаемого.

Функция вида U = l1 - l2 + l3

mU = √( ml12 + ml22 + ml32…)

СКП суммы n измеренных величин равна корню квадратному из суммы квадратов СКП всех слагаемых.

Линейная функция вида U = k1l1 + k2l2 + … + knln

mU = √[ (k1ml1)2 + (k2ml2)2 + … + (knmln)2],

т.е. СКП алгебраической суммы  произведений постоянной величины на аргумент равна корню квадратному из суммы квадратов произведений постоянной величины на СКП соответствующего аргумента.

Функция общего вида U = ƒ( l1, l2, …, ln)

Это наиболее общий случай математической зависимости, включающий все рассматриваемые выше функции, являющиеся частным случаем. Это  значит, что аргументы l1, l2, …, ln могут быть заданы любыми уравнениями. Для определения СКП такой сложной функции необходимо проделать следующее:

1. Найти полный дифференциал функции:

dU = (dƒ/dl1)×dl1 + (dƒ/dl2)×dl2 + … + (dƒ/dln)×dln,

где (dƒ/dl1), (dƒ/dl2), …,(dƒ/dln) – частные производные функции по каждому из аргументов.

2. Заменить дифференциалы  квадратами соответствующих СКП,  вводя в квадрат коэффициенты  при этих дифференциалах:

mU2 = (dƒ/dl1)2×ml12 + (dƒ/dl2)2×ml22 + … +(dƒ/dln)2×mln2.

3. Вычислить значения  частных производных по значениям аргументов:

(dƒ/dl1), (dƒ/dl2), …,(dƒ/dln).

И тогда mU = √[ (dƒ/dl1)2× ml12 + (dƒ/dl2)2×ml22 + … +(dƒ/dln)2×mln2].

СКП функции общего вида равна корню квадратному из суммы квадратов произведений частных производных по каждому аргументу на СКП соответствующего аргумента.

3.5 Оценка точности  по разностям двойных измерений  и по невязкам в полигонах  и ходах.

В практике геодезических  работ часто одну и ту же величину измеряют дважды. Например, стороны  теодолитного хода в прямом и обратном направлении, углы двумя полуприемами, превышения – по черной и красной стороне вех. Чем точнее произведены измерения, тем лучше сходимость результатов в каждой паре.

mlср. = ½ √∑d2/n

где d – разности в каждой паре; n – количество разностей.

Формула Бесселя:

mlср = ½ √∑d2/n-1

Если измерения должны удовлетворять какому-либо геометрическому  условию, например, сумма внутренних углов треугольника должна быть 180˚, то точность измерений можно определить по невязкам получающимся в результате погрешностей измерений.

μ=√∑ [f2 /n]/N,

где - СКП одного угла;

f – невязка в полигоне;

N – количество полигонов;

n – количество углов в полигоне.

4. Определение дополнительных пунктов

4.1 Цель и методы  определения дополнительных пунктов

Дополнительные пункты определяются наряду со съемочной сетью в основном для сгущения существующей геодезической  сети пунктами съемочного обоснования. Они строятся прямыми, обратными, комбинированными, а при наличии электронных  дальномеров – линейными засечками  и лучевым методом.

В некоторых случаях дополнительный пункт определяется передачей (снесением) координат с вершины знака на землю.

4.2 Передача координат  с вершины знака на землю. (Решение примера)

При производстве топографо-геодезических  работ в городских условиях невозможно бывает установить теодолит на пункте геодезической сети (пунктом является церковь, антенна и т.п.). Тогда  и возникает задача по снесению координат  пункта триангуляции на землю для  обеспечения производства геодезических  работ на данной территории.

Исходные данные: пункт  A с координатами XA, YA; пункты геодезической сети B (XB, YB) и C (XC, YC).

Полевые измерения: линейные измерения выбранных базисов  b1 и b'1; измерения горизонтальных углов ß1 , ß'1 , ß2 , ß'2 ; б , б'.

Требуется найти координаты точки P – XP, YP.

Решение задачи разделяется  на следующие этапы:

Решение числового  примера

Исходные данные

Обозначе-

ния

А

ХА, YА

B

ХB, YB

C

ХC, YC

β1

β2

β2

β2`

β1

β1`

б

б‘

Численные значения

6327,46

8961,24

5604,18

266,12

38o26'00"

70o08'54"

138o33'49"

27351,48

25777,06

22125,76

198,38

42˚26'36"

87˚28'00"

71˚55'02"


 

Вычисление расстояния DАР

Обозначе-

ния

B1

B2

sinβ2

sinβ‘2

sin(β1+β2 )

sin(β‘1+β‘2)

B1 sinβ2

B2 sinβ‘2

D1

D2

D1 -D2

2D/T

Dср

Численные значения

266,12

0,62160

0,94788

165,420

174,52

0,00

174,52

198,38

0,67482

0,76705

133,871

174,52


 

 

Решение обратных задач

Обозначения

YB

ХB

ХА

YC

ХC

ХА

tgαAB

αAB

tgαAC

αAC

sinα AB

sinα AC

cos αAB

cosαAC

S AB

S AC

Численные значения

10777,06

8961,24

7125,76

5605,08

-0,5977

7,23421

-0,51309

-0,99058

0,85833

-0,13693

3068,48

12351,48

6327,46

12351,48

6327,46

329˚07'55"

262o07'51"

5275,51


 

Вычисление дирекционных углов αАР = αD

Обозна-

чения

D

sinб

sinб'

S AB

S AC

sin ψ

sin ψ'

ψ

ψ'

φ

φ'

αAB

αAC

αD

α'D

αD-α'D

õmß

Численные значения

174,52

0,66179

3068,48

0,03950

2o15'50"

39o10'41"

329o07'55"

8o18'36"

∆α=1'30"

0,95061

5275,51

0,03292

1o53'13"

106o11'46"

262o07'51"

8o18'37"


 

 

sin ψ = D×sinб/ S AB; sin =174,52×0,66179/3068,48=0,03950;

sin ψ' = D×sinб'/ S; sin `=174,52×0,95061/5275,51=0,03292;

ψ = arcsin 0,03950 =2 o15` 50``;

ψ'= arcsin 0,03292=1 o53` 13``;

φ = 180 o – (б+ ψ) = 180 o – (138o33` 49``+2 o15` 50``) = 39o10` 41``

φ`= 180 o – (б`+ ψ` ) = 180 o – (71o55` 02``+1 o53` 13``) = 106 o11` 46``

αD = αAB ± φ =329o07` 55``+ 39o10` 41``= 8o18` 36``

αD`= αAC ± φ`=262o07` 51``+ 106 o11` 46``= 8o18` 37``

Контроль:

D α'D) õmβ;

где mβ –СКП измерения горизонтальных углов.

Знак «+» или «-» в формулах вычисления дирекционного угла берется в зависимости от взаимного расположения пунктов А, Р, В и С.

(8o18` 36``-8o18` 37``) ≤ 30``

0o00` 01`` ≤ 30``

Решение прямых задач (вычисление координат т.Р)

Обозначения

 

αD

αD'

 

sinαD

sinαD'

 

cosαD

cosαD'

 

DcosαD

DcosαD'

 

DsinαD

Dsinα'D

 

∆Х - ∆Х'

∆Y - ∆Y'

 

ХА

Хp = ХА+ ∆Х

Х'p = ХА+ ∆Х'

Yp = YА+ ∆Y

Y'p = YА+ ∆Y'

Численные значения

8o18'36"

0,14453

0,98950

172,69

25,22

∆=00,00

∆=00,00

∆доп=25см

6327,46

6500,15

8o18'37"

0,14454

0,98950

172,69

25,22

12351,48

12376,70


 

Хp = ХА+ ∆Х,Yp = YА+ ∆Y,

Х'p = ХА+ ∆Х',Y'p = YА+ ∆Y'.

∆Х= DcosαD,∆Y= DsinαD,

∆Х'= Dcosα'D,∆Y'=Dsinα'D.

Расхождение координат не должно превышать величины õmß×p, где p=206265", mß – средняя квадратическая погрешность измерения угла.

Оценка точности определения  положения пункта P.

Средняя квадратическая погрешность определения отдельного пункта вычисляется по формуле:

M2p = m2X +m2Y,M2p = m2D +(D×mα / P)2

где mD- определяется точностью линейных измерений, а m α – точностью угловых измерений.

Пример: mD =2см, mα= 5``, тогда

Mp =√ [(0,02) 2+(170×5/2×105)2] ≈ 2×10-2 = 0,02м.

4.3 Решение прямой  и обратной засечки (по варианту задания)

Определение координат пункта прямой засечкой (формулы Юнга).

Для однократной засечки  необходимо иметь два твёрдых  пункта. Контроль определения осуществляется вторичной засечкой с третьего твёрдого пункта.

Исходные данные: твердые  пункты А(ХАYА); B(ХBYB); С(ХСYС).

Полевые измерения: горизонтальные углы β1, β 2, β`1, β`2.

Определяется пункт P.

Формулы для решения задачи:

ХpА=((ХBА) ctg β 1+(YB-YА))/ (ctg β 1+ ctg β 2);

Хp= ХА+∆ХА;

Yp -YА=((YB-YА) ctg β 1+(ХBА))/ (ctg β 1+ ctg β 2); Yp= YА+∆YА;

Оценка точности определения  пункта P.

Вычисление СКП из 1-го и 2-го определения:

M1 =(mβ×√(S12+ S22))/p×sinγ1;

M2 =(mβ×√(S12+ S22))/p×sinγ2;

 

Значения величин, входящих в приведённые формулы следующие:

mβ =5``, p=206265``; γ=73˚15,9`; γ=62˚55,7`; S1=1686,77 м; S2=1639,80 м; S3=2096,62 м.

Стороны засечки найдены из решения обратных задач.

M1 = (5``×√2,86+2,69)/(2×105×0,958)=0,06м.

M2 = (5``×√2,69+4,41)/(2×105×0,890)=0,07м.

Mr = √ (M12 +M22); Mr =√ [(0,06) 2+(0,07) 2]=0,09м.

Расхождение между координатами из двух определений

Информация о работе Геодезические сети