Қысымды өлшейтін құралдар

Автор работы: Пользователь скрыл имя, 04 Марта 2014 в 15:45, курсовая работа

Краткое описание

Қысым (орыс. давление ) бір дене екінші дене бетіне (мысалы, ғимарат іргетасының грунтқа, сұйықтықтың ыдыс қабырғасына,қозғалтқыш цилиндріндегі газдың піспекке, т.б.) әсер еткенде пайда болатын қалыпты күштің (дене бетіне перпендикуляр) қарқындылығын сипаттайтын физикалық шама. Егер денеге әсер ететін күш оның бетіне біркелкі таралса, онда қысым (р) былай өрнектеледі:
Мұндағы S – дене бетінің күш түсетін бөлігінің ауданы, F – сол бөлікке перпендикуляр түсірілген күштердің қосындысы. Күш біркелкі таралған жағдайда қысым дене бетінің барлық нүктесінде бірдей болады, ал күш біркелкі таралмаса, онда қысым бір нүктеден екінші нүктеге өткен сайын өзгеріп отырады. Тұтас, үздіксіз орта үшін сол ортаның әрбір нүктесінің қысымы туралы ұғым енгізіледі. Бұл ұғым сұйықтық пен газ механикасында маңызды рөл атқарады.

Содержание

Кіріспе......................................................................................................................3
Қысымды өлшеу техникасы...................................................................7
Атмосфералық қысымды өлшеу.............................................................7
Торричелли тәжірибесі............................................................................8
Сиретілген газдың қысымын өлшеу.....................................................9
Өлшейтін аспаптардың медицинада қолданылуы.
Қысымды өлшейтін құралдар..................................................................
Манометр.................................................................................................
Барометр..................................................................................................
Вакуумметр.............................................................................................
Танометр.................................................................................................
Қортынды...........................................................................................................
Пайдаланылған әдебиеттер.....................................................................................

Прикрепленные файлы: 1 файл

Курстық жоба (Автосохраненный).docx

— 157.62 Кб (Скачать документ)

Мазмұны

Кіріспе......................................................................................................................3

    1. Қысымды өлшеу техникасы...................................................................7
    2. Атмосфералық қысымды өлшеу.............................................................7
    3. Торричелли тәжірибесі............................................................................8
    4. Сиретілген газдың қысымын өлшеу.....................................................9
    5. Өлшейтін аспаптардың медицинада қолданылуы.
  1. Қысымды өлшейтін құралдар..................................................................
    1. Манометр.................................................................................................
    2. Барометр..................................................................................................
    3. Вакуумметр.............................................................................................
    4. Танометр.................................................................................................

Қортынды...........................................................................................................

Пайдаланылған әдебиеттер.....................................................................................

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Кіріспе

Қысым (орыс. давление ) бір дене екінші дене бетіне (мысалы, ғимарат іргетасының грунтқа, сұйықтықтың ыдыс қабырғасына,қозғалтқыш цилиндріндегі газдың піспекке, т.б.) әсер еткенде пайда болатын қалыпты күштің (дене бетіне перпендикуляр) қарқындылығын сипаттайтын физикалық шама. Егер денеге әсер ететін күш оның бетіне біркелкі таралса, онда қысым (р) былай өрнектеледі: 

Мұндағы S – дене бетінің күш түсетін бөлігінің ауданы, F – сол бөлікке перпендикуляр түсірілген күштердің қосындысы. Күш біркелкі таралған жағдайда қысым дене бетінің барлық нүктесінде бірдей болады, ал күш біркелкі таралмаса, онда қысым бір нүктеден екінші нүктеге өткен сайын өзгеріп отырады. Тұтас, үздіксіз орта үшін сол ортаның әрбір нүктесінің қысымы туралы ұғым енгізіледі. Бұл ұғым сұйықтық пен газ механикасында маңызды рөл атқарады.

Тыныштықтағы сұйықтықтың кез келген нүктесінің барлық бағытындағы қысымы бірдей болады. Бұл жағдай қозғалыстағы идеал (үйкеліссіз қозғалатыс) сұйық пен газ үшін де орындалады. Тұтқыр сұйықтықтың берілген нүктедегі қысымы ретінде өзара перпендикуляр үш бағыттағы (х, у, z – осьтері бағытындағы) қысымның орташа мәні р = (рх+ру+рz)/3 алынады. Газдардың кинетикалық теориясы бойынша, газды ортадағы қысым жылулық қозғалыстағы газ молекулаларының бір-бірімен, газдағы денелермен және ыдыс қабырғаларымен соқтығысуы кезінде импульстың берілуімен байланысты болғандықтан мұны “жылулық” қысым деп атайды. Ол газдың абсолют температурасы (Т) мен бірлік көлемдегі газ молекулаларының санына (n) пропорционал: р = nkT, мұндағы k = 1,38.10–23 Дж/К – Больцман тұрақтысы.

Сұйықтықтар мен қатты денелердің қысымы денелердің бір-біріне жақындауы кезінде олардың атомдарының бірін-бірі тебуі нәтижесінде пайда болады. Мұны “суық” қысым дейді. Тыныштықтағы сұйықтық салмағының әсерінен оның ішінде h тереңдікте пайда болатын қысымды гидростатикалық қысым деп атайды: р = rgh, мұндағы r – сұйықтықтың тығыздығы, g – еркін түсу үдеуі. Егер сұйық бетіне сырттан р0 қысымы түсірілетін болса, онда h тереңдіктегі сұйық қысымы: р = р0+ rgh өрнегімен анықталады. Қысым физикалық, химиялық, механикалық, биологиялық, т.б. құбылыстарда елеулі рөл атқарады; манометр, барометр, вакуумметр тәрізді құрылғылардың және әр түрлі қысым датчиктерінің көмегімен өлшенеді. Қысымның Бірліктердің халықаралық жүйесіндегі өлшем бірлігі – Паскаль (Па). 1 Па = Н/м2. Бірліктердің МКГСС жүйесінде кгс/см2, сондай-ақ жүйеден тыс өлшем бірліктері: атмосфералық (физикалық атмосфера), мм сынап бағанасы, мм су бағанасы.

Қысым бірліктері

 

 
Паскаль 
(Pa)

 
Бар 
(bar)

Техникалық атмосфера 
(at)

 
Атмосфера 
(atm)

 
Торр 
(Torr)

Паунд-күш бір шаршы инчке 
(psi)

1 Па

≡ 1 N/m2

10−5

1.0197×10−5

9.8692×10−6

7.5006×10−3

145.04×10−6

1 бар

105

≡ 106 dyn/cm2

1.0197

0.98692

750.06

14.5037744

1 ат

0.980665 ×105

0.980665

≡ 1 kgf/cm2

0.96784

735.56

14.223

1 атм

1.01325 ×105

1.01325

1.0332

≡ 1 атм

760

14.696

1 торр

133.322

1.3332×10−3

1.3595×10−3

1.3158×10−3

≡ 1 Torr; ≈ 1 mmHg

19.337×10−3

1 пси

6.895×103

68.948×10−3

70.307×10−3

68.046×10−3

51.715

≡ 1 lbf/ин2


 

Үлгі: 1 Па = 1 Н/м2  = 10−5 бар  = 10.197×10−6 ат  = 9.8692×10−6 атм  = 7.5006×10−3 торр  = 145.04×10−6 пси

 

Вакуум (лат. vacuum — қуыс, бостық) — кеңістіктің еш заттегісіз күйі (физикалық вакуум), кейде газдық қысымы атмосфералық қысымнан әлдеқайда аздығын (техникалық вакуум) айтады. 

Вакуум - атмосфералық қысымның төменгі жайындағы газ қалыбы.

Газдық қысымы нөлге тең таза вакуум философиялық түсінік деуге болады, себебі табиғатта ондай кездеспейді, тіпті кездескеннің өзінде куантум физиканың айтуынша еш кеңістік бос бола алмайды. Куантум өріс теориясындағы анықсыздық принципіне сәйкес физикалық вакуумда нөлдік толқындар болып, әрқашан виртуалды бөлшектер пайда болып және жоғалып тұрады.

Вакуум—

  1. абсолюттік гидромеханикалық қысымы атмосфералық қысымнан кем РЛ<Р, сұйыктықтың (немесе газ торізді ортаның) күйі;

  1. абсолют қысымның (гидромеханикалық) қысымға дейін жетіспеушілігі (кез келген нүктеде немесе сүйықтықтың аймағында): Раж = Ра — РА; вакуумның шамасын өрнектеудің төрт тәсілі бар:

  1. күштің ауданға қатынасы;

  1. күш/аудан өлшем бірлігімен;

  1. ұзындық өлшем бірлігімен (меншікті салмағы белгілі сұйық бағанасының биіктігінің өлшем бірлігімен);

  1. атмосфералық үлеспен

Актуальді немесе лездік вакуум түрлері актуальді кысым жағдайында туындайтын вакуум (уакыттың осы сәтінде) сұйықтыкпен толтырылған кеңістіктің тыныштықтағы кез келген бір нүктесінің сүйықтықтың шамасыньгң атмосфералық қысымынан кем болады.

Орташаланған вакуум — орташаланған абсолюттік қысым жағдайындағы вакуум. Рауалы вакуум қүрылғы немесе құрал үшін мүмкін болатын вакуумның ең үлкен шамасы.

Шекті вакуум кез келген сүйықтықтың белгілі бір температурасында болуы мүмкін ең үлкен вакуум. Бұл вакуум "каныққан бу қысымы" кеңістікті қанықтыратын сүйықтыктың қысымына тең абсолюттік гидромеханикалық қысым жағдайында пайда болады.

 “Вакуум” ұғымы, әдетте тұйық не газы сорылған ыдыстағы газға байланысты айтылады, кейде бұл ұғым бос кеңістіктегі (мысалы, ғарыштағы) газға да қолданылады. Вакуумның дәрежесі қалдық газдардың шамасын өлшей отырып анықталады. Вакуумның физикалық сипаттамасы газ молекулаларының еркін жол ұзындығы (λ) мен нақты процеске не құралға тән өлшемнің (d) ара қатынасы (λ/d) болып есептеледі. Мысалы, өлшемнің (d-ның) қатарына вакуумдық камера қабырғаларының ара қашықтығы, вакуумдық түтіктің диаметрі, электр вакуумдық құралдар электродтарының ара қашықтығы, т.б. жатады. λ/d қатынасының шамасына қарай вакуумды төмен вакуум (λ/d 1), орташа В. (λ/d ~ 1) және жоғары В. (λ/d 1) деп бөледі. Әдеттегі вакуумдық қондырғылар мен құралдарда (d λ 10 см) төмен вакуумға қысымы 1 мм сын. бағ-нан жоғары қысым, орташа вакуумға 1 — 10-3 мм сын. бағ. аралығындағы қысым, ал жоғары вакуумға 10-3 мм сын. бағ-нан төмен қысым сәйкес келеді. Осы кездегі белгілі әдістермен жеткен вакуумның дәрежесі 10-15 — 10-16 мм сын. бағ. Бұл жағдайда 1 см3 көлемде небары бірнеше ондаған ғана молекула қалады.

Техникалық вакуум. Төмен вакуумдағы газ қасиеті молекулалардың бір-бірімен жиі соқтығысуымен анықталады. Соқтығысу кезінде молекулалар арасында энергия алмасу процесі жүреді. Мұндай газда ішкі үйкеліс болады (қыскаша Тұтқырлық) және оның газ ағыны аэродинамика заңдарына бағынады. Төмен вакуумда электр және жылу өткізгіштік, ішкіүйкеліс, диффузия құбылыстары бірқалыпты өзгереді не тұрақты күйінде қалады. Мысалы, төмен вакуумдағы “ыстық” және “салқын” қабырғалар арасындағы кеңістікте газ температурасы бірте-бірте өзгереді. Бұл жағдайда тасымалданатын жылу мөлшері (жылу өткізгіштік) не зат мөлшері (диффузия) қысымға тәуелсіз. Егер газ екі қатынас ыдыста, ал температуралары әр түрлі болса, онда олардың қысымдары теңескенде, температуралары да теңеседі. Төмен вакуум арқылы ток жүргенде шешуші рөлді газ молекулаларының иондалуы атқарады

Физикалық вакуум. Жоғары вакуумдағы газ қасиеті тек молекулалардың қабырғаларға не басқа қатты денелерге соқтығысуымен ғана анықталады. Өйткені молекулалардың өзара соқтығысуы өте сирек болғандықтан мұнда ол шешуші рөл атқармайды. Молекулалар қабырғалар аралығында түзу сызық бойымен қозғалады. Тасымалдау құбылысы қабырғаларға тасымалданатын шамалар градиенті секірмесінің пайда болуымен сипатталады. Мысалы, ыстық және салқын қабырғалар арасындағы кеңістіктегі молекулалардың жартысына жуығының жылдамдығы салқын қабырғаның температурасына сәйкес, ал қалған бөлігінің жылдамдығы ыстық қабырғаның температурасына сәйкес келеді. Басқаша айтқанда, барлық көлемдегі газдың орташа температурасы бірдей, бірақ ол ыстық және салқын қабырғалардың орташа температурасынан өзгеше. Тасымалданатын шаманың (жылудың) мөлшері газдың қысымына тура пропорционал. Жоғары вакуумдағы ток тек электродтар бөліп шығаратын (эмиссия) электрондар мен иондарға ғана тәуелді. Бұл жағдайда газ молекулалары иондалуының екінші дәрежеде ғана рөлі бар.

Орташа вакуумдағы газ қасиеті төмен және жоғары вакуумдағы газ қасиеттерінің аралығында болады. Аса жоғары вакуумның ерекшелігі газ молекулаларының соқтығысуымен емес, вакуумдағы қатты дене бетіндегі процестерге байланысты болып келеді. Кез келген дене беті жұқа газ қабатымен қапталған. Дене бетіндегі осы газ қабатын қыздыру арқылы жоюға болады. Газдан арылған дене бетінің қасиеті күрт өзгереді: үйкеліс коэффициенті күшті артады, кейбір жағдайларда бөлме темп-расының өзінде-ақ материалдарды диффузиялық тәсілмен балқытып біріктіру мүмкіндігі туады.

 

 

 

 


  1. Қысымды өлшеу техникасы.
    1. Атмосфералық қысымды өлшеу.

Атмосфералық қысым — атмосфераның жер бетіне және ондағы заттарға түсіретін қысымы. Ол барометрмен, яғни сынап бағанасының биіктігімен (мм сын. бағ.), СИ жүйесінде паскальмен (Па), ал метеорол. ғылымында гектопаскальмен (гПа) немесе миллибармен (мб) өлшенеді. Теңіз деңгейінде атмосфералық қысым орташа алғанда 1013,25 гПа-ға (760 мм сын. бағ.) тең. Жоғарылаған сайын ауа тығыздығы кеміп, атмосфералық қысым азаяды. Жер бетіндегі қысыммен салыстырғанда 5 км биіктікте атмосфералық қысым 2 есе, 10 км биіктікте 4 есе, 15 км биіктікте 8 есе кемиді. Астана қаласының атмосфералық қысымы Алматыға қарағанда жоғары.[1] Жер шарын коршап тұрған атмосфера өзінің салмақ күші арқылы жер бетіне қысым түсіреді, оны атмосфералық қысым деп атайды. Қазіргі кезде атмосфералық қысымды гектопаскальмен (гПа) көрсетеді. Қалыптағы атмосфералық қысым ретінде оның теңіз деңгейіндегі орташа көрсеткіші (1013 гПа) алынады. Қысымы бірдей нүктелерді қосатын сызықтарды изобаралар деп атайды. Атмосфералық қысымды металдан жасалған барометр — анероидпен өлшейді.

Атмосфералық қысым Жер шарының кез келген бөліктерінде үздіксіз өзгеріп отырады. Тропиктік белдеуде қысымның тәуліктік өзгерістері айқынырақ байқалады. Кейде тәулік ішінде қысым айырмашылығы 20—30 гПа-ға жетуі мүмкін. Атмосфералық қысымның жылдық өзгерістері материктердің орталық бөлігінде күштірек байқалады. Мәселен, Гоби шөлінде бұл көрсеткіш тіпті 40 гПа-ға жетеді, мұнда қысым максимумы қаңтарда, минимумы шілдеде байқалады. Материктер шетіндегі муссонды облыстарда және мұхиттардың жоғары ендіктерде жатқан бөліктерінде атмосфералық қысымның жылдық ауытқулары едәуір болады. Владивостокта бұл көрсеткіш 14 гПа, ал Мумбайда (Бомбей) 10 гПа шамасында (картадан бұл қалаларды тауып, географиялық орнының ерекшеліктерін атаңдар).

Атмосфералық қысым биіктікке қарай да өзгереді, бұл, ең алдымен, ауа температурасының биіктікке қарай таралуына байланысты. Мәселен, Еуропада қысымның орташа жылдық көрсеткіші теңіз деңгейінде 1014 гПа болса, 5 км биіктікте — 538 гПа, 10 км биіктікте — 262 гПа, ал 20 км биіктікте бар болғаны 56 гПа ғана. Жер шарының басқа аудандарында да атмосфералық қысымның биіктікке байланысты өзгерістері шамамен осындай болады.

Атмосфералық қысымның географияльщ таралуы өте күрделі сипат алады. Өйткені ол географиялық ендікке, құрлық пен мұхиттың арасалмағына, жергілікті физикалық-географиялық, жағдайға байланысты болады. Жалпы Жер шарында географиялық ендіктерге байланысты 3 темен қысым белдеуі және 4 жоғары қысым басым белдеу ажыратылатынын білесіңдер. Бірақ жеке материктер мен мұхиттар бойынша бұл белдеулердің жергілікті айырмашылықтары болады. Мәселен, қыс кезінде қоңыржай ендіктерде қалыптасатын максимумдардағы қысым Канада жерінде 1020 гПа болса, ал Азияда 1035 гПа-ға жетеді.

Қысымның географиялық ендіктер бойынша таралу заңдылығы материктер мен мұхиттардағы қысым айырмашылықтарының болуына байланысты бұзылады: жазда материктердің қоңыржай ендіктерінде де төмен қысым байқалады. Қысымы төмен аймақтарды қысымдың минимум немесе циклон деп атайды. Қысым жоғары болатын тұйық изобаралар жүйесін қысымның максимум немесе антициклін дейді (оларға мысал келтіріңдер).

Ауа массалары үнемі қозғалыста болатындықтан, қасиеттері әртүрлі ауа массалары шектескен аймақтарда өте кең алқапты қамтитын (ені 500—900 км, ұзындығы 2000—3000 км-ге дейін жететін) өтпелі зоналар — атмосфералық фронттар қалыптасады. Фронттар ауа массаларының қозғалу сипатына қарай жылы және суық фронтцеп бөлінеді, Жылы фронт кезінде жылы ауа салқын ауаны тез арада ығыстырып, жинақталған жылы ауа құйын тәрізді өрлеген ауа ағынын түзіп, циклондық әрекеттер күшейеді. Соның нәтижесінде бұлттылық күшейіп, жауын- шашын көбейеді. Жазда температура төмендеп, қыста керісінше жоғарылайды. Ал суық фронт кезінде салқын ауа жылдам қозғалатындықтан антициклондық жағдай қалыптасып, ауаның құйын тәрізді төмендеген ағыны түзіледі. Сондықтан суық фронт кезінде жауын-шашын біршама аз түседі.

Информация о работе Қысымды өлшейтін құралдар