Волоконная оптика и ее применение

Автор работы: Пользователь скрыл имя, 29 Октября 2013 в 13:33, контрольная работа

Краткое описание

С начала развития компьютерной техники прошло немного немало -шестьдесят лет. За это время мы получили такие скорости вычислений, такие скорости передачи данных, о которых шестьдесят лет тому назад нельзя было и мечтать. Все началось с того, что в 1948 году вышли книги К. Шеннона “Математическая теория связи” и Н. Винера “Кибернетика, или управление и связь в животном и машине ”. Они и определили новый вектор развития науки, в результате чего появился компьютер: вначале ламповый гигант, затем транзисторный и на интегральных схемах, на микропроцессорах. И вот в 1989 году появился персональный компьютер IBM. В том же году вышла программа MS - DOS, а в 1990 - Windows-3.0, и далее пошло стремительное совершенствование “железа” и программного обеспечения. К концу столетия человечество получило потрясающую миниатюризацию компьютерной техники, сокращения расстояния между компьютером и человеком, тотальное проникновение компьютерных технологий в бытовую сферу

Содержание

Введение
Волоконно-оптические линии связи как понятие
Физические особенности
Технические особенности
Основные составляющие элементы оптоволокна
Есть в волоконной технологии и свои недостатки
Оптическое волокно и его виды
Волоконно-оптический кабель
Области применения и классификация волоконно-оптических кабелей (ВОК)
Электронные компоненты систем оптической связи
Передающие оптоэлектронные модули
Светоизлучающие диоды
Лазерные диоды
Волоконные световоды
Дисперсия и пропускная способность
Заключение
Список используемой литературы

Прикрепленные файлы: 1 файл

надо.doc

— 357.00 Кб (Скачать документ)

Во втором случае дисперсия  называется кодовой и обусловлена наличием большого количества мод, время распространения которых различно .

В геометрической интерпретации  соответствующие модам лучи идут под разными углами, проходят различный  путь в сердцевине волокна и, следовательно, поступают на вход приемника с различной задержкой.

Результирующее значение уширения импульсов за счет модовой  , материальной и волноводной дисперсий

 

 

С учетом реального соотношения  вкладов отдельных видов дисперсий  имеем для многомодовых волокон  уширение импульсов  , а для одномодовых волокон .

Величина уширения импульса в многомодовых волокнах за счет модовой  дисперсии, которая характеризуется  временем нарастания сигнала и определяется как разность между самым большим  и самым малым временем прихода  в сечение световода на расстоянии I от начала, может быть рассчитана для ступенчатого и градиентного световода соответственно по формулам

 

и ,

 

где — показатель преломления сердцевины; — показатель преломления оболочки; l — длина линии; c— скорость света;

— длина связи мод, при которой наступает установившийся режим (5...7 км для ступенчатого и 10...15 км градиентного волокон);

 

 

.

 

Соответственно пропускная способность градиентного световода  в 2/ раз меньше, чем ступенчатого, при одинаковых значениях . Учитывая, что, как правило, , различие пропускной способности указанных световодов может достигать двух порядков.

Уширения импульса в одномодовых волокнах могут быть определены по формулам

 

;

,

 

где — относительная ширина спектра излучения; l —длина линии; с — скорость света; — длина волны; — показатель преломления.

Для расчета  можно воспользоваться также упрощенными формулами

 

и

 

где — ширина спектральной линии источника излучения, равная 0,1...4 Нм для лазера и 15...80 Нм для световода; l— длина линии; и — удельные материальная и волноводная дисперсии соответственно.

Удельные дисперсии  выражаются в пикосекундах на километр (длины световода) и нанометр (ширины спектра). Зависимости материальной и волноводной дисперсий для  кварцевого стекла приведены на (рис.21).

Как видно из рисунка, с увеличением длины волны уменьшается и проходит через нуль, а несколько растет. Вблизи мкм происходит их взаимная компенсация и результирующая дисперсия приближается к нулевому значению. Поэтому длина волны 1,3 мкм получает широкое применение в одномодовых системах передачи. Однако по затуханию предпочтительнее волна 1,55 мкм, и для достижения минимума дисперсии в этом случае приходится варьировать профилем показателя преломления и диаметром сердцевины. При сложном профиле типа W и трехслойном световоде можно и на длине волны 1,55 мкм получить минимум дисперсионных искажений.

 

В табл. 4 приведены дисперсионные  свойства различных типов ВС.

Таблица 4

Вид дисперсии

Величина дисперсии  световода

многомодового

одномодового

ступенчатого

градиентного

Волноводная

Малое значение

Взаимная компенсация

Материальная

2...5 нс/км

0,1...0,3 нс/км

Малые значения

Межмодовая

30...50 нс/км

2...4 нс/км

Полоса частот

Десятки мегагерц

Сотни мегагерц

Тысячи мегагерц


 

Сравнивая дисперсионные  характеристики различных световодов, можно отметить, что лучшими обладают одномодовые световоды. Хорошие характеристики также у градиентных световодов с плавным изменением показателя преломления. Наиболее резко дисперсия проявляется у ступенчатых многомодовых световодов.

Рассмотрим пропускную способность ОК. В электрических  кабелях с медными проводниками (симметричных и коаксиальных) полоса пропускания и дальность связи  в основном лимитируются затуханием и помехозащищенностью цепей. Оптические кабели принципиально не подвержены электромагнитным воздействиям и обладают высокой помехозащищенностью, поэтому параметр помехозащищенности не является ограничивающим фактором. В ОК полоса пропускания и дальность связи лимитируются затуханием и дисперсией.

Затухание ОК растет по закону . В широкой полосе частот оно весьма стабильное и лишь на очень высоких частотах возрастает за счет дисперсии. Поэтому дисперсия и определяет ширину полосы пропускания частот. Из рисунка видно, что полоса пропускания одномодовых световодов существенно больше, чем ступенчатых и градиентных.

 

 

Рис. 9. Зависимость дисперсии ( ) и пропускной способности ( ) ОК от длины линии

 

На рис.9 показан характер зависимостей дисперсии ( ) и пропускной способности ( ) оптических кабелей от длины линии. Дисперсия приводит как к ограничению пропускной способности ОК, так и к снижению дальности передачи по ним (l). Полоса частот и дальность передачи l взаимосвязаны. Соотношение между ними выражается формулами:

для коротких линий ( ), у которых уширение импульсов с длиной растет линейно,

 

 

для длинных линий ( ), у которых действует закон изменения величины ширины импульсов,

 

 

где — дисперсия на 1 км; — искомое значение дисперсии; —длина линии; —длина линии устанавливающего режима (5...7 км для ступенчатого и 10...15 км для градиентного волокна).

Километрическое значение полосы пропускания определяется величиной  уширения импульсов:

 

 

Физические  процессы в волоконных световодах

 

В отличие от обычных  кабелей, обладающих электрической  проводимостью и током проводимости , ОК имеют совершенно другой механизм — они обладают токами смещения , на основе которых действует также радиопередача. Отличие от радиопередачи состоит в том, что волна не распространяется в свободном пространстве, а концентрируется в самом объеме световода и передается по нему в заданном направлении (рис.10).

 

Рис.10 Процесс передачи:

а—радиосвязь; б—волоконно-оптическая связь

 

Передача волны по световоду осуществляется за счет отражений  ее от границы сердцевины и оболочки, имеющих разные показатели преломления . В обычных кабелях носителем передаваемой информации является электрический ток, а в ОК—лазерный луч.

В обычных широко используемых в настоящее время симметричных и коаксиальных кабелях передача организуется по двухпроводной схеме с применением прямого и обратного проводников цепи (рис.11).

 

Рис. 11. Передача энергии по двухпроводным (а) и волноводным (б) направляющим средам

 

В световодах, волноводах и других направляющих средах (НС) нет  двух проводников, и передача происходит волноводным методом по закону многократного отражения волны от границ раздела сред. Такой отражательной границей может быть металл—диэлектрик, диэлектрик—диэлектрик с различными диэлектрическими (оптическими) свойствами и др.

Граница раздела двухпроводных (двухсвязных) и волноводных (односвязных) НС характеризуется в первую очередь соотношением между длиной волны и поперечными размерами направляющей среды .

При должно быть два провода: прямой и обратный, и передача происходит по обычной двухпроводной схеме; в противном случае не требуется двухпроводная система, и передача осуществляется за счет многократного отражения волны от границ раздела сред с различными характеристиками. Поэтому передача по волноводным системам (световодам, волноводам и другим НС) возможна лишь в диапазоне очень высоких частот, когда длина волны меньше, чем поперечные размеры—диаметр НС.

Оптические микронные  волны подразделяются на три диапазона: инфракрасный, видимый и ультрафиолетовый (табл.2). В настоящее время используются в основном волны длиной 0,7...1,6 мкм и ведутся работы по освоению ближнего инфракрасного диапазона: 2; 4; 6 мкм.

 

Таблица 2

Диапазон

ИКЛ

ВЛ

УФЛ

f , Гц

1012... 1014

10—14... 1015

1015... 1017

, мкм

0,75...100

0,4...0,75

0,01...0,4


 

Таким образом, для передачи электромагнитной энергии применяются электрические оптические кабели, а также радиосвязь (табл.3).

 

Таблица 3 (Передача по электрическим (ЭК), оптическим (ОК) кабелям и радиосвязным каналам (РС) )

Среда передачи

НС

НС

ОС

Ток


 

В разных системах используются различные среды (направляющая или открытая) и токи ( и ). Особенности этих НС связаны с частотными ограничениями при передаче энергии.

Принципиально различен частотный диапазон передачи по волноводным  и двухпроводным системам. Волноводные  системы имеют частоту отсечки — критическую частоту , ведут себя как фильтры ВЧ, и по ним возможна лишь передача волн длиной менее чем . Двухпроводные системы свободны от этих ограничений и способны передавать весь диапазон частот — от нуля и выше.

 

 

Заключение

 

Открылись широкие горизонты  практического применения ОК и волоконно-оптических систем передачи в таких отраслях народного хозяйства, как радиоэлектроника, информатика, связь, вычислительная техника, космос, медицина, голография, машиностроение, атомная энергетика и др. Волоконная оптика развивается по шести направлениям:

- многоканальные системы передачи информации;

- кабельное телевидение;

- локальные вычислительные сети;

- датчики и системы сбора обработки и передачи информации;

- связь и телемеханика на высоковольтных линиях;

- оборудование и монтаж мобильных объектов.

Многоканальные ВОСП начинают широко использоваться на магистральных  и зоновых сетях связи страны, а также для устройства соединительных линий между городскими АТС. Объясняется  это большой информационной способностью ОК и их высокой помехозащищенностью. Особенно эффективны и экономичны подводные оптические магистрали. Применение оптических систем в кабельном телевидении обеспечивает высокое качество изображения и существенно расширяет возможности информационного обслуживания индивидуальных абонентов. В этом случае реализуется заказная система приема и предоставляется возможность абонентам получать на экране своих телевизоров изображения газетных полос, журнальных страниц и справочных данных из библиотеки и учебных центров.

На основе ОК создаются  локальные вычислительные сети различной  топологии (кольцевые, звездные и др.). Такие сети позволяют объединять вычислительные центры в единую информационную систему с большой пропускной способностью, повышенным качеством и защищенностью от несанкционированного допуска.

Волоконно-оптические датчики  способны работать в агрессивных  средах, надежны, малогабаритны и  не подвержены электромагнитным воздействиям. Они позволяют оценивать на расстоянии различные физические величины (температуру, давление, ток и др.). Датчики используются в нефтегазовой промышленности, системах охранной и пожарной сигнализации, автомобильной технике и др.Весьма перспективно применение ОК на высоковольтных линиях электропередачи (ЛЭП) для организации технологической связи и телемеханики. Оптические волокна встраиваются в фазу или трос. Здесь реализуется высокая защищенность каналов от электромагнитных воздействий ЛЭП и грозы. Легкость, малогабаритность, невоспламеняемость ОК сделали их весьма полезными для монтажа и оборудования летательных аппаратов, судов и других мобильных устройств.

В последнее время  появилось новое направление  в развитии волоконно-оптической техники  — использование среднего инфракрасного  диапазона волн 2...10 мкм. Ожидается, что потери в этом диапазоне не будут превышать 0,02 дБ/км. Это позволит осуществить связь на большие расстояния с участками регенерации до 1000 км. Исследование фтористых и халькогенидных стекол с добавками циркония, бария и других соединений, обладающих сверхпрозрачностью в инфракрасном диапазоне волн, дает возможность еще больше увеличить длину регенерационного участка. Ожидаются новые интересные результаты в использовании нелинейных оптических явлений, в частности соли тонного режима распространения оптических импульсов, когда импульс может распространяться без изменения формы или периодически менять свою форму в процессе распространения по световоду. Использование этого явления в волоконных световодах позволит существенно увеличить объем передаваемой информации и дальность связи без применения ретрансляторов.

Информация о работе Волоконная оптика и ее применение