Автор работы: Пользователь скрыл имя, 29 Октября 2013 в 13:33, контрольная работа
С начала развития компьютерной техники прошло немного немало -шестьдесят лет. За это время мы получили такие скорости вычислений, такие скорости передачи данных, о которых шестьдесят лет тому назад нельзя было и мечтать. Все началось с того, что в 1948 году вышли книги К. Шеннона “Математическая теория связи” и Н. Винера “Кибернетика, или управление и связь в животном и машине ”. Они и определили новый вектор развития науки, в результате чего появился компьютер: вначале ламповый гигант, затем транзисторный и на интегральных схемах, на микропроцессорах. И вот в 1989 году появился персональный компьютер IBM. В том же году вышла программа MS - DOS, а в 1990 - Windows-3.0, и далее пошло стремительное совершенствование “железа” и программного обеспечения. К концу столетия человечество получило потрясающую миниатюризацию компьютерной техники, сокращения расстояния между компьютером и человеком, тотальное проникновение компьютерных технологий в бытовую сферу
Введение
Волоконно-оптические линии связи как понятие
Физические особенности
Технические особенности
Основные составляющие элементы оптоволокна
Есть в волоконной технологии и свои недостатки
Оптическое волокно и его виды
Волоконно-оптический кабель
Области применения и классификация волоконно-оптических кабелей (ВОК)
Электронные компоненты систем оптической связи
Передающие оптоэлектронные модули
Светоизлучающие диоды
Лазерные диоды
Волоконные световоды
Дисперсия и пропускная способность
Заключение
Список используемой литературы
Во втором случае дисперсия называется кодовой и обусловлена наличием большого количества мод, время распространения которых различно .
В геометрической интерпретации соответствующие модам лучи идут под разными углами, проходят различный путь в сердцевине волокна и, следовательно, поступают на вход приемника с различной задержкой.
Результирующее значение уширения импульсов за счет модовой , материальной и волноводной дисперсий
С учетом реального соотношения
вкладов отдельных видов
Величина уширения импульса в многомодовых волокнах за счет модовой дисперсии, которая характеризуется временем нарастания сигнала и определяется как разность между самым большим и самым малым временем прихода в сечение световода на расстоянии I от начала, может быть рассчитана для ступенчатого и градиентного световода соответственно по формулам
и ,
где — показатель преломления сердцевины; — показатель преломления оболочки; l — длина линии; c— скорость света;
— длина связи мод, при которой наступает установившийся режим (5...7 км для ступенчатого и 10...15 км градиентного волокон);
.
Соответственно пропускная способность градиентного световода в 2/ раз меньше, чем ступенчатого, при одинаковых значениях . Учитывая, что, как правило, , различие пропускной способности указанных световодов может достигать двух порядков.
Уширения импульса в одномодовых волокнах могут быть определены по формулам
;
,
где — относительная ширина спектра излучения; l —длина линии; с — скорость света; — длина волны; — показатель преломления.
Для расчета можно воспользоваться также упрощенными формулами
и
где — ширина спектральной линии источника излучения, равная 0,1...4 Нм для лазера и 15...80 Нм для световода; l— длина линии; и — удельные материальная и волноводная дисперсии соответственно.
Удельные дисперсии выражаются в пикосекундах на километр (длины световода) и нанометр (ширины спектра). Зависимости материальной и волноводной дисперсий для кварцевого стекла приведены на (рис.21).
Как видно из рисунка, с увеличением длины волны уменьшается и проходит через нуль, а несколько растет. Вблизи мкм происходит их взаимная компенсация и результирующая дисперсия приближается к нулевому значению. Поэтому длина волны 1,3 мкм получает широкое применение в одномодовых системах передачи. Однако по затуханию предпочтительнее волна 1,55 мкм, и для достижения минимума дисперсии в этом случае приходится варьировать профилем показателя преломления и диаметром сердцевины. При сложном профиле типа W и трехслойном световоде можно и на длине волны 1,55 мкм получить минимум дисперсионных искажений.
В табл. 4 приведены дисперсионные свойства различных типов ВС.
Таблица 4
Вид дисперсии |
Величина дисперсии световода | ||
многомодового |
одномодового | ||
ступенчатого |
градиентного | ||
Волноводная |
Малое значение |
Взаимная компенсация | |
Материальная |
2...5 нс/км |
0,1...0,3 нс/км |
Малые значения |
Межмодовая |
30...50 нс/км |
2...4 нс/км |
— |
Полоса частот |
Десятки мегагерц |
Сотни мегагерц |
Тысячи мегагерц |
Сравнивая дисперсионные характеристики различных световодов, можно отметить, что лучшими обладают одномодовые световоды. Хорошие характеристики также у градиентных световодов с плавным изменением показателя преломления. Наиболее резко дисперсия проявляется у ступенчатых многомодовых световодов.
Рассмотрим пропускную способность ОК. В электрических кабелях с медными проводниками (симметричных и коаксиальных) полоса пропускания и дальность связи в основном лимитируются затуханием и помехозащищенностью цепей. Оптические кабели принципиально не подвержены электромагнитным воздействиям и обладают высокой помехозащищенностью, поэтому параметр помехозащищенности не является ограничивающим фактором. В ОК полоса пропускания и дальность связи лимитируются затуханием и дисперсией.
Затухание ОК растет по закону . В широкой полосе частот оно весьма стабильное и лишь на очень высоких частотах возрастает за счет дисперсии. Поэтому дисперсия и определяет ширину полосы пропускания частот. Из рисунка видно, что полоса пропускания одномодовых световодов существенно больше, чем ступенчатых и градиентных.
Рис. 9. Зависимость дисперсии ( ) и пропускной способности ( ) ОК от длины линии
На рис.9 показан характер зависимостей дисперсии ( ) и пропускной способности ( ) оптических кабелей от длины линии. Дисперсия приводит как к ограничению пропускной способности ОК, так и к снижению дальности передачи по ним (l). Полоса частот и дальность передачи l взаимосвязаны. Соотношение между ними выражается формулами:
для коротких линий ( ), у которых уширение импульсов с длиной растет линейно,
для длинных линий ( ), у которых действует закон изменения величины ширины импульсов,
где — дисперсия на 1 км; — искомое значение дисперсии; —длина линии; —длина линии устанавливающего режима (5...7 км для ступенчатого и 10...15 км для градиентного волокна).
Километрическое значение полосы пропускания определяется величиной уширения импульсов:
Физические процессы в волоконных световодах
В отличие от обычных
кабелей, обладающих электрической
проводимостью и током проводим
Рис.10 Процесс передачи:
а—радиосвязь; б—волоконно-оптическая связь
Передача волны по световоду осуществляется за счет отражений ее от границы сердцевины и оболочки, имеющих разные показатели преломления . В обычных кабелях носителем передаваемой информации является электрический ток, а в ОК—лазерный луч.
В обычных широко используемых в настоящее время симметричных и коаксиальных кабелях передача организуется по двухпроводной схеме с применением прямого и обратного проводников цепи (рис.11).
Рис. 11. Передача энергии по двухпроводным (а) и волноводным (б) направляющим средам
В световодах, волноводах и других направляющих средах (НС) нет двух проводников, и передача происходит волноводным методом по закону многократного отражения волны от границ раздела сред. Такой отражательной границей может быть металл—диэлектрик, диэлектрик—диэлектрик с различными диэлектрическими (оптическими) свойствами и др.
Граница раздела двухпроводных (двухсвязных) и волноводных (односвязных) НС характеризуется в первую очередь соотношением между длиной волны и поперечными размерами направляющей среды .
При должно быть два провода: прямой и обратный, и передача происходит по обычной двухпроводной схеме; в противном случае не требуется двухпроводная система, и передача осуществляется за счет многократного отражения волны от границ раздела сред с различными характеристиками. Поэтому передача по волноводным системам (световодам, волноводам и другим НС) возможна лишь в диапазоне очень высоких частот, когда длина волны меньше, чем поперечные размеры—диаметр НС.
Оптические микронные волны подразделяются на три диапазона: инфракрасный, видимый и ультрафиолетовый (табл.2). В настоящее время используются в основном волны длиной 0,7...1,6 мкм и ведутся работы по освоению ближнего инфракрасного диапазона: 2; 4; 6 мкм.
Таблица 2
Диапазон |
ИКЛ |
ВЛ |
УФЛ |
f , Гц |
1012... 1014 |
10—14... 1015 |
1015... 1017 |
, мкм |
0,75...100 |
0,4...0,75 |
0,01...0,4 |
Таким образом, для передачи электромагнитной энергии применяются электрические оптические кабели, а также радиосвязь (табл.3).
Таблица 3 (Передача по электрическим (ЭК), оптическим (ОК) кабелям и радиосвязным каналам (РС) )
Среда передачи |
НС |
НС |
ОС |
Ток |
|
|
|
В разных системах используются различные среды (направляющая или открытая) и токи ( и ). Особенности этих НС связаны с частотными ограничениями при передаче энергии.
Принципиально различен частотный диапазон передачи по волноводным и двухпроводным системам. Волноводные системы имеют частоту отсечки — критическую частоту , ведут себя как фильтры ВЧ, и по ним возможна лишь передача волн длиной менее чем . Двухпроводные системы свободны от этих ограничений и способны передавать весь диапазон частот — от нуля и выше.
Заключение
Открылись широкие горизонты практического применения ОК и волоконно-оптических систем передачи в таких отраслях народного хозяйства, как радиоэлектроника, информатика, связь, вычислительная техника, космос, медицина, голография, машиностроение, атомная энергетика и др. Волоконная оптика развивается по шести направлениям:
- многоканальные системы передачи информации;
- кабельное телевидение;
- локальные вычислительные сети;
- датчики и системы сбора обработки и передачи информации;
- связь и телемеханика на высоковольтных линиях;
- оборудование и монтаж мобильных объектов.
Многоканальные ВОСП начинают широко использоваться на магистральных и зоновых сетях связи страны, а также для устройства соединительных линий между городскими АТС. Объясняется это большой информационной способностью ОК и их высокой помехозащищенностью. Особенно эффективны и экономичны подводные оптические магистрали. Применение оптических систем в кабельном телевидении обеспечивает высокое качество изображения и существенно расширяет возможности информационного обслуживания индивидуальных абонентов. В этом случае реализуется заказная система приема и предоставляется возможность абонентам получать на экране своих телевизоров изображения газетных полос, журнальных страниц и справочных данных из библиотеки и учебных центров.
На основе ОК создаются локальные вычислительные сети различной топологии (кольцевые, звездные и др.). Такие сети позволяют объединять вычислительные центры в единую информационную систему с большой пропускной способностью, повышенным качеством и защищенностью от несанкционированного допуска.
Волоконно-оптические датчики способны работать в агрессивных средах, надежны, малогабаритны и не подвержены электромагнитным воздействиям. Они позволяют оценивать на расстоянии различные физические величины (температуру, давление, ток и др.). Датчики используются в нефтегазовой промышленности, системах охранной и пожарной сигнализации, автомобильной технике и др.Весьма перспективно применение ОК на высоковольтных линиях электропередачи (ЛЭП) для организации технологической связи и телемеханики. Оптические волокна встраиваются в фазу или трос. Здесь реализуется высокая защищенность каналов от электромагнитных воздействий ЛЭП и грозы. Легкость, малогабаритность, невоспламеняемость ОК сделали их весьма полезными для монтажа и оборудования летательных аппаратов, судов и других мобильных устройств.
В последнее время появилось новое направление в развитии волоконно-оптической техники — использование среднего инфракрасного диапазона волн 2...10 мкм. Ожидается, что потери в этом диапазоне не будут превышать 0,02 дБ/км. Это позволит осуществить связь на большие расстояния с участками регенерации до 1000 км. Исследование фтористых и халькогенидных стекол с добавками циркония, бария и других соединений, обладающих сверхпрозрачностью в инфракрасном диапазоне волн, дает возможность еще больше увеличить длину регенерационного участка. Ожидаются новые интересные результаты в использовании нелинейных оптических явлений, в частности соли тонного режима распространения оптических импульсов, когда импульс может распространяться без изменения формы или периодически менять свою форму в процессе распространения по световоду. Использование этого явления в волоконных световодах позволит существенно увеличить объем передаваемой информации и дальность связи без применения ретрансляторов.