Автор работы: Пользователь скрыл имя, 29 Октября 2013 в 13:33, контрольная работа
С начала развития компьютерной техники прошло немного немало -шестьдесят лет. За это время мы получили такие скорости вычислений, такие скорости передачи данных, о которых шестьдесят лет тому назад нельзя было и мечтать. Все началось с того, что в 1948 году вышли книги К. Шеннона “Математическая теория связи” и Н. Винера “Кибернетика, или управление и связь в животном и машине ”. Они и определили новый вектор развития науки, в результате чего появился компьютер: вначале ламповый гигант, затем транзисторный и на интегральных схемах, на микропроцессорах. И вот в 1989 году появился персональный компьютер IBM. В том же году вышла программа MS - DOS, а в 1990 - Windows-3.0, и далее пошло стремительное совершенствование “железа” и программного обеспечения. К концу столетия человечество получило потрясающую миниатюризацию компьютерной техники, сокращения расстояния между компьютером и человеком, тотальное проникновение компьютерных технологий в бытовую сферу
Введение
Волоконно-оптические линии связи как понятие
Физические особенности
Технические особенности
Основные составляющие элементы оптоволокна
Есть в волоконной технологии и свои недостатки
Оптическое волокно и его виды
Волоконно-оптический кабель
Области применения и классификация волоконно-оптических кабелей (ВОК)
Электронные компоненты систем оптической связи
Передающие оптоэлектронные модули
Светоизлучающие диоды
Лазерные диоды
Волоконные световоды
Дисперсия и пропускная способность
Заключение
Список используемой литературы
Многомодовое градиентное волокно
Название волокна говорит само за себя. Основное отличие градиентного волокна от ступенчатого заключается в неравномерной плотности материала световода. Если отобразить плотности распределение на графике, то получится параболическая картина. Эффект межмодовой дисперсии как и в случае ступенчатой схемы все же проявляется, однако намного меньше. Это легко объяснимо с точки зрении геометрии. На рисунке видно, что длины пути лучей сильно сокращены за счет сглаживания. Более того интересен тот факт, что лучи проходящие дальше от оси световода хотя и преодолевают большие расстояния, но при этом имеют большие скорости, так как плотность материала от центра к внешнему радиусу уменьшается. А световая волна распространяется тем быстрее, чем меньше плотность среды. В итоге более длинные траектории компенсируются большей скоростью. При удачно сбалансированном распределении плотности стекла возможно свести к минимуму разницу во времени распространения, за счет этого межмодовая дисперсия градиентного волокна намного меньше. Как и в случае со ступенчатым волокном, в настоящее время используют три стандартных диаметра градиентного сердечника: 100 микрон, 62.5 микрон и 50 микрон, работающих также на частотах 850 нм, 1300 нм и 1500 нм. Однако насколько не были бы сбалансированны градиентные многомодовые волокна, их пропускная способность не сравниться с одномодовыми технологиями.
Волоконно-оптический кабель
Вторым важнейшим компонентом, определяющим надежность и долговечность является волоконно-оптический кабель (ВОК). На сегодня в мире несколько десятков фирм, производящих оптические кабели различного назначения. Наиболее известные из них: AT&T, General Cable Company (США); Siecor (ФРГ); BICC Cable (Великобритания); Les cables de Lion (Франция); Nokia (Финляндия); NTT, Sumitomo (Япония), Pirelli(Италия).
Определяющими параметрами при производстве ВОК являются условия эксплуатации и пропускная способность линии связи. По условиям эксплуатации кабели подразделяют на:
- монтажные
- станционные
- зоновые
- магистральные.
Первые два типа кабелей предназначены для прокладки внутри зданий и сооружений. Они компактны, легки и, как правило, имеют небольшую строительную длину. Кабели последних двух типов предназначены для прокладки в колодцах кабельных коммуникаций, в грунте, на опорах вдоль ЛЭП, под водой. Эти кабели имеют защиту от внешних воздействий и строительную длину более двух километров.
Для обеспечения большой пропускной способности линии связи производятся ВОК, содержащие небольшое число (до 8) одномодовых волокон с малым затуханием, а кабели для распределительных сетей могут содержать до 144 волокон как одномодовых, так и многомодовых, в зависимости от расстояний между сегментами сети.
При изготовлении ВОК в основном используются два подхода:
конструкции со свободным перемещением элементов
конструкции с жесткой связью между элементами.
По видам конструкций
различают кабели повивной скрутки,
пучковой скрутки, с профильным сердечником,
ленточные кабели. Существуют многочисленные
комбинации конструкций ВОК, которые
в Сочетании с большим ассортим
Отдельно рассмотрим способы сращивания строительных длин кабелей.
Сращивание строительных длин оптических кабелей производится с использованием кабельных муфт специальной конструкции. Эти муфты имеют два или более кабельных ввода, приспособления для крепления силовых элементов кабелей и одну или несколько сплайс-пластин. Сплайс-пластина - это конструкция для укладки и закрепления сращиваемых волокон разных кабелей.
После того, как оптический кабель проложен, необходимо соединить его с приемо-передающей аппаратурой. Сделать это можно с помощью оптических коннекторов (соединителей). В системах связи используются коннекторы многих видов.
Области применения и классификация волоконно-оптических кабелей (ВОК)
В зависимости от основной области применения волоконно-оптические кабели подразделяются на три основных вида:
http://www.tls-group.ru/sks/
Основной областью использования кабелей внутренней прокладки является организация внутренней магистрали здания, тогда как кабели для шнуров предназначены в основном для изготовления соединительных и коммутационных шнуров, а также для выполнения горизонтальной разводки при реализации проектов класса «fiber to the desk» (волокно до рабочего места) и «fiber to the room» (волокно до комнаты).
Общую классификацию оптических кабелей СКС можно представить в виде как показано на рисунке.
Электронные компоненты систем оптической связи
Передающие оптоэлектронные модули
Передающие оптоэлектронные
модули (ПОМ), применяемые в волоконно-
Типы и характеристики источников излучения
Главным элементом ПОМ является источник излучения. Перечислим основные требования, которым должен удовлетворять источник излучения, применяемый в ВОЛС:
- излучение должно вестись на длине волны одного из окон прозрачности волокна. В традиционных оптических волокнах существует три окна, в которых достигаются меньшие потери света при распространении: 850. 1300, 1550 нм;
- источник излучения должен выдерживать необходимую частоту модуляции для обеспечения передачи информации на требуемой скорости;
- источник излучения
должен быть эффективным, в
том смысле, что большая часть
излучения источника попадала
в волокно с минимальными
- источник излучения должен иметь достаточно большую мощность, чтобы сигнал можно было передавать на большие расстояния, но и не на столько, чтобы излучение приводило к нелинейным эффектам или могло повредить волокно или оптический приемник;
- температурные вариации не должны сказываться на функционировании источника излучения;
- стоимость производства
источника излучения должна
Два основных типа источников излучения, удовлетворяющие перечисленным требования используются в настоящее время – светодиоды (LED) и полупроводниковые лазерные , (LD).
Главная отличительная черта между светодиодами и лазерными диодами -это ширина спектра излучения. Светоизлучающие диоды имеют широкий спектр излучения, в то время верные диоды имеют значительно более узкий спектр, см. рис 1. Оба типа устройств весьма компактны и хорошо сопрягаются со стандартными электронными цепями.
Рис 1. Спектры излучения светодиодов и лазерных диодов
Светоизлучающие диоды
Благодаря своей простоте и низкой стоимости, светодиоды распространены значительно шире, чем лазерные диоды.
Принцип работы светодиода основан
на излучательной рекомбинации носителей
заряда в активной области гетерогенной
структуры при пропускании
Длина волны излучения X (мкм) связана с шириной запрещенной зоны активного слоя Eg (эВ) законом сохранения энергии λ= 1,24/Еg, рис. 2. б.
Показатель преломления активного слоя выше показателя преломления ограничивающих пассивных слоев, благодаря чему рекомбинационное излучение может распространяться в пределах активного слоя, испытывая многократное отражение, что значительно повышает КПД источника излучения.
Двойная гетероструктура: а) гетероструктура;
б) энергетическая диаграмма при прямом смещении
Гетерогенные структуры могут создаваться на основе разных полупроводниковых материалов. Обычно в качестве подложки используются GaAs и 1пР. Соответствующий композит композиционный состав активного материала выбирается в зависимости от длины волны излучения создается посредством напыления на подложку.
Длину волны излучения
λ0 определяют как значение, соответствующее
максимуму спектрального
Лазерные диоды
Два главных конструктивных отличия есть у лазерного диода по сравнению со светодиодом. Первое, лазерный диод имеет встроенный оптический резонатор. Второе, лазерный диод работает при значительно больших значениях токов накачки, чем светодиод, что позволяет при превышении некоторого порогового значения получить режим индуцированного излучения. Именно такое излучение характеризуется высокой когерентностью, благодаря чему лазерные диоды имеют значительно меньше ширину спектра излучения (1-2 нм) против 30-50 нм у светодиодов.
Зависимость мощности излучения
от тока накачки описывается ватт-
Рис. 3 Ватт-амперные характеристики: 1 – лазерного диода; 2 -светодиода
Лазер состоит из активной среды, устройства накачки и резонансной системы (рис. 23). Активной средой может быть твердый, жидкий или газообразный материал. Широкое применение получили полупроводники. В качестве устройства накачки используется главным образом электрическая энергия. Могут применяться также солнечная радиация, атомная энергия, химическая реакция и другие источники. Роль резонанса выполняют зеркала или другие полированные поверхности.
Рис. 4 Принципиальная схема лазера:
1 — активная среда; 2 — устройство накачки; 3 — резонансная система
По принципу действия и эффекту светового излучения лазер может быть отнесен к люминесцентным материалам. Известны различные виды люминесценции (свечения): тепловая (лампочка накаливания), холодная (фосфор и другие светящиеся материалы), природная (светлячок, гнилое дерево), химическая (активная реакция) и др. В полупроводниковых лазерах действует электрическая люминесценция — свечение происходит за счет электрической накачки.
Принцип действия квантовых приборов (лазеров) основан на использовании излучения атомов вещества под воздействием внешнего электромагнитного поля. Из квантовой механики известно, что движение электронов атома вокруг ядра характеризует энергетическое состояние электронов, иначе называемое энергетическим уровнем. При переходе электронов с одной орбиты на другую под воздействием внешнего электромагнитного поля меняется энергетический уровень и происходит излучение энергии.
В настоящее время применяются различные типы лазеров: полупроводниковые, твердотельные, газовые и др. Полупроводниковый лазер представляет собой полупроводниковый диод типа р-п, выполненный из активного материала, способного излучать световые кванты—фотоны. В качестве такого материала преимущественно используется арсенид галия с соответствующими добавками (теллура, алюминия, кремния, цинка). В зависимости от характера и количества присадок полупроводник имеет области электронной п (за счет теллура) и дырочной р (за счет цинка) проводимостей.
Под действием приложенного напряжения в полупроводнике происходит возбуждение носителей, в силу чего возникает излучение световой энергии и появляется поток фотонов. Этот поток, многократно отражаясь от зеркал, образующих резонансную систему, усиливается, что приводит к появлению лазерного луча с остронаправленной диаграммой излучения.
Схематично полупроводниковый лазер показан на (рис. 5).
Рис. 5. Полупроводниковый лазер
Объем полупроводника примерно 1 мм3. К нему подведены металлические электроды для подачи электрического напряжения. Роль отражающих зеркал выполняют плоскопараллельные отполированные торцевые грани полупроводника. Излучение происходит в слое р-п перехода толщиной 0,15...0,2 мкм.
Наряду с лазерами в качестве источника оптического излучения могут применяться светодиоды. Светодиод является таким же люминесцентным полупроводником типа р-п из арсенида галия, но не имеет резонансного усиления. В отличие от лазера, обладающего остронаправленным когерентным лучом, в светодиоде излучение происходит спонтанно (самопроизвольно) и луч имеет меньшую мощность и широкую направленность.