Автор работы: Пользователь скрыл имя, 29 Января 2014 в 20:54, статья
Цель данной статьи - кратко рассказать об основных этапах познания трения вплоть до последних достижений в этой области, причем на самом элементарно-школьном уровне, чтобы дать учителям физики и математики дополнительный материал, с помощью которого они смогли бы пробудить любопытство своих учеников и показать, что не только в глубинах космоса и джунглях Амазонки есть нераскрытые тайны, ожидающие новых исследователей.
ТРЕНИЕ - СИЛА ЗНАКОМАЯ, НО ТАИНСТВЕННАЯ (ПЕРВОЗВАНСКИЙ А.А. , 1998), ФИЗИКА
Рассказано об истории
изучения трения и современных представлениях
о его механизме. Дается качественное
и математически
ТРЕНИЕ - СИЛА ЗНАКОМАЯ,
НО ТАИНСТВЕННАЯ
А. А. ПЕРВОЗВАНСКИЙ
Санкт-Петербургский
Трение может быть полезным
и вредным - эту аксиому человек
освоил еще на заре цивилизации. Ведь
два самых главных изобретения
- колесо и добывание огня - связаны
именно со стремлением уменьшить
и увеличить эффекты трения. Однако
понимание природы трения и законов,
которым подчиняется это
НЕМНОГО ИСТОРИИ
Талантливый человек во всем талантлив, но лишь немногие гении были гениальны во всем, что бы они ни делали, и, пожалуй, за всю историю человечества только один человек - Леонардо да Винчи заслуживает звания абсолютно универсального гения. Как художник, скульптор и инженер он превосходил своих современников. Как ученый он обогнал свою эпоху на века. Среди бесчисленных научных достижений и первая формулировка законов трения. Леонардо (1519) утверждал, что сила трения, возникающая при контакте тела с поверхностью другого тела, пропорциональна нагрузке (силе прижатия), направлена против направления движения и не зависит от площади контакта. Модель Леонардо была переоткрыта через 180 лет Г. Амонтоном и получила окончательную формулировку в работах Ш.О. Кулона (1781). Амонтон и Кулон ввели понятие коэффициента трения как отношения силы трения к нагрузке, придав ему значение физической константы, полностью определяющей силу трения для любой пары контактирующих материалов. До сих пор именно эта формула
Fтр = fтрP,
где P - сила прижатия, а Fтр - сила трения, является единственной формулой, фигурирующей в учебниках по физике, а значения коэффициента трения fтр для различных материалов (сталь по стали, сталь по бронзе, чугун по коже и т.д.) входят в стандартные инженерные справочники и служат базой для традиционных технических расчетов. Однако уже в XIX веке стало ясно, что закон Амонтона-Кулона не дает правильного описания силы трения, а коэффициенты трения отнюдь не являются универсальными характеристиками. Прежде всего было отмечено, что коэффициенты трения зависят не только от того, какие материалы контактируют, но и от того, насколько гладко обработаны контактирующие поверхности. Выяснилось также, что сила статического трения отличается от силы трения при движении. Чтобы напомнить, что обычно понимается под статическим трением, представим схему простейшего эксперимента (рис. 1). Будем пытаться сдвинуть с места тело потянув за трос с пружинным динамометром. При малом перемещении конца троса тело остается на месте: силы, развиваемой пружиной динамометра, недостаточно. Обычно говорят, что на контактирующих поверхностях развивается сила трения, уравновешивающая приложенную силу. Постепенно увеличиваем перемещение и вместе с ним упругую силу, приложенную к телу. В какой-то момент она оказывается достаточной для того, чтобы стронуть тело с места. Зарегистрированное в этот момент показание динамометра и называют обычно силой статического трения, характеризующего предельные возможности неподвижного (статического) сцепления тел. Если мы будем продолжать медленно вытягивать трос, то тело поедет по поверхности. Оказывается, что регистрируемые в ходе движения показания динамометра будут не такими, как в момент страгивания. Обычно сила трения при медленном движении меньше силы страгивания, статического трения. Кулон изучал именно силу трения при медленном взаимном перемещении контактирующих тел и установил, что эта сила не зависит от величины скорости, а только от направления движения (всегда направлена против движения).
Конец XIX века ознаменовался замечательными достижениями в исследовании вязкости, то есть трения в жидкостях. Наверное, с доисторических времен известно, что смазанные жиром или даже просто смоченные водой поверхности скользят значительно легче. Смазка трущихся поверхностей применялась с момента зарождения техники, но только О. Рейнольдс в 1886 году дал первую теорию смазки.
При наличии достаточно толстого слоя смазки, обеспечивающего отсутствие непосредственного контакта трущихся поверхностей, сила трения определяется только свойствами (гидродинамикой) смазочного слоя. Сила статического трогания равна нулю, а с ростом скорости сила сопротивления движению увеличивается. Если же смазки недостаточно, то действуют все три механизма: сила статического сопротивления страгиванию с места, кулонова сила и сила вязкого сопротивления. Итак, к концу XIX века выяснилась картина зависимости силы трения от скорости, представленная графиком на рис. 2, а. Но уже на пороге XX века возникло сомнение в правильности этой картины при очень малых скоростях. В 1902 году Штрибек опубликовал данные, свидетельствующие о том, что при отсутствии смазки сила сопротивления не падает сразу с уровня силы трогания до кулоновой силы, а возникает постепенное падение силы с ростом скорости - эффект, противоположный гидродинамической вязкости. Этот факт был многократно перепроверен в дальнейшем и теперь обычно именуется штрибек-эффектом. Картина зависимости силы трения от скорости приобрела форму, показанную на рис. 2, б.
Быстро развивавшаяся техника XX века требовала все большего внимания к исследованию трения. В 30-е годы исследования в области трения стали настолько интенсивными, что потребовалось выделить их как специальную науку - трибологию, лежащую на стыке механики, физики поверхностных явлений и химии (создание новых смазочных материалов - дело химиков). Только в США в этой области работают в настоящее время более 1000 исследователей, и в мировой науке ежегодно публикуется более 700 статей. Рассказать обо всем и упомянуть всех невозможно (см., например, [1-3]), и дальше будет сделана попытка описать только общую картину и упомянуть только некоторые интересные результаты.
СОВРЕМЕННАЯ КАРТИНА ТРЕНИЯ
Для того чтобы понять хотя бы основы трибологии, следует прежде всего обратиться к топографии поверхностей контактирующих между собой частей реальных механизмов. Эти поверхности никогда не являются идеально плоскими, имеют микронеровности. Места выступов на одной поверхности отнюдь не совпадают с местами выступов на другой. Как образно выразился один из пионеров трибологии, Ф. Боуден, "наложение двух твердых тел одного на другое подобно наложению швейцарских Альп на перевернутые австрийские Альпы - площадь контакта оказывается очень малой". Однако при сжатии остроконечные "горные пики" пластически деформируются и подлинная площадь контакта увеличивается пропорционально приложенной нагрузке. Именно сопротивление относительному сдвигу этих контактных зон и является основным источником трения движения. Само сопротивление сдвигу при идеальном контакте определяется межмолекулярным взаимодействием, зависящим от природы контактирующих материалов.
Таким образом, объясняется влияние двух главных факторов: нагрузки (силы прижатия) и свойств материалов. Однако имеются два осложняющих обстоятельства. Во-первых, металлические поверхности на воздухе быстро покрываются тонкой пленкой окислов и фактически контакт осуществляется не между чисто металлическими поверхностями, а между окисными пленками, имеющими более низкое сопротивление сдвигу. Проникновение же любой жидкой или пастообразной смазки вообще меняет картину контакта. Во-вторых, при относительном сдвиге осуществляется не только скольжение по контактным площадкам, но и упругое деформирование выступов, пиков. Выделим схематически только два пика (практически наклон их склонов порядка 10?-20?, но для наглядности они нарисованы на рис. 3 круче). При попытке сдвинуться в горизонтальном направлении один пик начинает прогибать другой, то есть сначала пытается сгладить дорогу, а потом уже скользить по ней. Ширина пиков мала (порядка сотых долей миллиметра), и в пределах таких микросмещений главную роль играет именно упругое сопротивление, то есть сила должна подчиняться закону Гука, быть пропорциональной смещению. Иначе говоря, при микросмещениях контактирующие поверхности оказываются как бы связанными многочисленными пружинками. Но после того как верхний пик в ходе движения перевалит через нижний (причем оба они сплющиваются), пружинка рвется вплоть до встречи с новым препятствием. Таким образом, после приложения продольной силы, стремящейся сдвинуть два тела, могут возникнуть следующие четыре основных режима [3]: режим I упругих микросмещений, режим II скольжения по площадкам контактов мягкого поверхностного слоя (окисных пленок), режим III, когда при большей скорости выдавливаемая жидкая смазка создает подъемную силу, нарушающую большую часть прямых контактов и тем самым снижающую силу трения, режим IV, когда прямые контакты вообще исчезают, одно тело "плывет" над другим по смазочному слою и с увеличением скорости возрастает вязкое сопротивление.
Этим качественным представлениям соответствует график зависимости коэффициента трения от скорости, представленный на рис. 2, б. Заметим, что зона спадания коэффициента трения (зона штрибек-эффекта) обычно очень мала, порядка мм/с. Если же смазка не вводится искусственно, то увеличение трения с ростом скорости почти незаметно и мы возвращаемся к закону Амонтона-Кулона, за исключением зоны очень малых скоростей (рис. 2, в).
ФРИКЦИОННЫЕ АВТОКОЛЕБАНИЯ
Вернемся теперь к самому
простому эксперименту (см. рис. 1). Будем
тянуть тело с помощью троса, в
который врезана пружина
Таким образом, движение тела оказывается колебательным, в котором периодически сменяются фазы прилипания и скольжения (по-английски это звучит короче - stick and slip). Такое движение принято называть фрикционными автоколебаниями: фрикционными потому, что они порождены трением (friction), а авто потому, что они не навязаны извне какой-либо внешней колеблющейся силой, а являются внутренним свойством системы. Внешнее воздействие - движение конца троса не является колебательным, трос движется с постоянной скоростью. Конечно, через этот трос мы подпитываем тело энергией, поэтому-то колебания являются незатухающими несмотря на потери энергии в контакте.
Фрикционные автоколебания
- крайне неприятный эффект. Для многих
машин требуется обеспечить плавное,
без толчков, медленное движение.
Сварочный робот должен плавно вести
сварочный аппарат вдоль
Обрисованная картина указывает и на два главных пути уменьшения трения: улучшить качество обработки поверхностей, чтобы уменьшить пики, а тем самым силу страгивания, или обеспечить возможно лучший доступ смазки и сохранность поверхностного слоя. Это самые важные пути, и они предназначены не только для борьбы за плавность хода, но прежде всего для борьбы с ненужными потерями энергии в скользящих контактах. Поиском эффективных видов смазочных материалов и способов их подвода к скользящим поверхностям занимается армия специалистов. Без их успехов невозможен прогресс в машиностроении. Но да простят они нас за то, что дальше мы уделим внимание только одному, совершенно особому методу, отнюдь не главному практически, но крайне интересному и оригинальному.
ВИБРАЦИОННОЕ СГЛАЖИВАНИЕ
Начнем с самого простого эксперимента, который можно осуществить не отходя от стола. Положите какой-нибудь предмет, например тяжелый учебник, на лист бумаги и попытайтесь затем вытянуть этот лист из-под книги. Если вы медленно потянете за лист, книга поползет вместе с ним. Но попытайтесь тянуть не равномерно, а толчками. Скорость движения вытягиваемого листа будет переменной, и, хотя в среднем она может быть прежней или даже меньшей, вы обнаружите, что книга почти останется на месте, а лист из-под нее вытянется. Из-за чего книга не отцеплялась от листа? Конечно, из-за наличия сухого трения, большой силы трения покоя. Из-за чего же это сцепление уменьшилось? Только из-за того, что переменная скорость позволила преодолеть барьер трения покоя и привести тела во взаимное движение.
Вернемся теперь к нашей
основной экспериментальной схеме
(рис. 1). Пусть на основное движение
вытягиваемого конца троса
Измерения показывают, что средний уровень силы, регистрируемой динамометром, плавно растет с ростом средней скорости вытягивания троса вплоть до уровня трения скольжения. Примерный график зависимости средней силы сопротивления F от средней скорости скольжения показан на рис. 4. Отметим, что с увеличением размаха (амплитуды) вибраций кривая становится все более пологой.
Главный вывод очень прост,
хотя и удивителен: при не слишком
больших средних скоростях
Но на самом деле эффект
вибрационного сглаживания