Современные методы аккумулирования тепла энергии солнца

Автор работы: Пользователь скрыл имя, 30 Октября 2014 в 21:17, реферат

Краткое описание

Сейчас во всем мире идет повсеместная экономия сырьевых ресурсов. Ученые многих стран пытаются решить эту проблему различными методами, в том числе и с помощью применения альтернативных источников энергии. К ним можно отнести такие виды, как использование водных ресурсов малых рек, морских волн, гейзеров и даже отходов производства и бытового мусора.

Содержание

Ключевые слова
Введение
Глава 1. Физические основы для создания теплового аккумулятора
Глава 2. Жидкостные тепловые аккумуляторы
Глава 3. Тепловые аккумуляторы с твёрдым теплоаккумулирующим материалом.
Глава 4. Аккумуляторы тепла, основанные на фазовых переходах.
Глава 5. Конструкция ТА фазового перехода.
Заключение
Список литературы

Прикрепленные файлы: 1 файл

бренер срм1 (моя).docx

— 199.12 Кб (Скачать документ)

Теплоаккумулирующие материалы в этом случае должны отвечать следующим требованиям: кристаллизоваться отдельными кристаллами; иметь большую разность плотностей твердой и жидкой фаз; быть химически стабильными; не образовывать эмульсий с теплоносителем.

Теплоносители подбираются по следующим признакам:

    • химическая стабильность в смеси с ТАМ,
    • большая разница плотностей по отношению к ТАМ,
    • малая способность к вспениванию,
    • ряд других требований, вытекающих из особенностей конструкции.

При использовании теплоносителя, более плотного чем твердый ТАМ, реализуется схема, изображенная на рис. 4 е. В процессе работы аккумулятор заполнен смесью теплоаккумулирующего материала и теплоносителя. В верхнюю часть ТА подается жидкий теплоноситель, который попадает на поверхность ТАМ, охлаждает (нагревает) его и отводится из нижней части аккумулятора. За счет меньшей плотности жидкой фазы ТАМ по сравнению с твердой его закристаллизовавшиеся частицы опускаются в нижнюю часть аккумулятора. В процессе работы ТА происходит постепенное заполнение всего объема закристаллизовавшимися ТАМ. При использовании теплоносителя с плотностью, меньшей плотности ТАМ, реализуется схема, изображенная на рис. 4 ж. Распыл теплоносителя происходит в нижней части аккумулятора. В процессе всплытия капель теплоносителя ТАМ нагревается либо охлаждается и одновременно интенсивно перемешивается. Основными недостатками приведенных способов контакта ТАМ и теплоносителя считаются потребности в постороннем источнике энергии для прокачки и необходимость тщательной фильтрации теплоносителя с целью препятствия уносу частиц ТАМ.

Указанные недостатки отсутствуют в конструкции, использующей принцип испарительно-конвективного переноса тепла при непосредственном контакте ТАМ и теплоносителя (рис.4, з). В этом случае помимо названных свойств теплоносителя требуется, чтобы температура кипения при атмосферном давлении была несколько ниже температуры плавления ТАМ. Для заряда аккумулятора давление и соответственно температура кипения теплоносителя в нем устанавливаются выше температуры плавления ТАМ. В зарядном теплообменнике осуществляется подвод тепла. Теплоноситель закипает и пузырьки пара при температуре выше температуры плавления ТАМ поднимаются вверх и подогревают ТАМ. При этом происходит плавление ТАМ и конденсация теплоносителя. Расплавленный ТАМ поднимается вверх, а конденсат теплоносителя опускается вниз, По мере плавления ТАМ пузырьки теплоносителя выходят в паровое пространство ТА и в конце процесса зарядки весь теплоноситель в паровой фазе находится в паровом пространстве. На этапе отвода тепла от ТА давление в нем снижается так, что температура конденсации теплоносителя становится ниже температуры плавления ТАМ. При отводе тепла на поверхности разрядного теплообменника происходит конденсация теплоносителя, который стекает на расплавленный ТАМ. Происходит испарение капель теплоносителя и кристаллизация частиц ТАМ. Затвердевший ТАМ опускается в нижнюю часть ТА, а пар теплоносителя поднимается вверх.

По мере охлаждения ТАМ капли теплоносителя опускаются все ниже и ниже и в конце процесса разрядки весь теплоноситель оказывается в нижней части ТА.

 

 

 

 

 

 

 

 

 

 

 

 

Заключение

Технология накопления тепловой энергии уже достаточно развита. В ходе ее развития получено множество уроков, и теперь уже от производителей зависит использование на практике информации, полученной из этих уроков. Только наиболее передовым и добросовестным владельцам требуется система оптимального регулирования, позволяющая экономить средства. Для всех остальных пользователей сложность системы управления должна быть сравнима со сложностью работы с электрическим водонагревателем.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Список использованной литературы

 

  1. Агеев В.А. Нетрадиционные и возобновляемые источники энергии (курс лекций) © Кафедра теплоэнергетических систем, 2006
  2. Гулиа Н. В. Накопители энергии. – М.,1980г.
  3. Левенберг В.Д. и др. Аккумулирование тепла. 1991г.
  4. Пугач Л.И. нетрадиционная энергетика, возобновляемые источники.
  5. rodniki.bel/dom/elgen0.htm
  6. seu/programs/ecodom/book/index.htm

 


Информация о работе Современные методы аккумулирования тепла энергии солнца