Современные методы аккумулирования тепла энергии солнца

Автор работы: Пользователь скрыл имя, 30 Октября 2014 в 21:17, реферат

Краткое описание

Сейчас во всем мире идет повсеместная экономия сырьевых ресурсов. Ученые многих стран пытаются решить эту проблему различными методами, в том числе и с помощью применения альтернативных источников энергии. К ним можно отнести такие виды, как использование водных ресурсов малых рек, морских волн, гейзеров и даже отходов производства и бытового мусора.

Содержание

Ключевые слова
Введение
Глава 1. Физические основы для создания теплового аккумулятора
Глава 2. Жидкостные тепловые аккумуляторы
Глава 3. Тепловые аккумуляторы с твёрдым теплоаккумулирующим материалом.
Глава 4. Аккумуляторы тепла, основанные на фазовых переходах.
Глава 5. Конструкция ТА фазового перехода.
Заключение
Список литературы

Прикрепленные файлы: 1 файл

бренер срм1 (моя).docx

— 199.12 Кб (Скачать документ)

Внешняя теплоизоляция аккумулятора - деревянная, кирпичная или из газобетона, - служит для понижения температуры обогревающей поверхности примерно до 40оС. Теплоизоляция обеспечивает медленное остывание бака-аккумулятора с тем, чтобы температура в комнате поддерживалась в приемлемом диапазоне температур.

 

Глава 3. Тепловые аккумуляторы с твёрдым теплоаккумулирующим материалом

 

Тепловые аккумуляторы с твердым ТАМ в настоящее время наиболее распространены. Это связано в первую очередь с использованием недорогих материалов, простых и проверенных технических решений. В качестве ТАМ используются наиболее дешевые материалы — щебень, феолит (железная руда), остатки строительных материалов.

Традиционно рассматриваются тепловые аккумуляторы с неподвижной или подвижной матрицами.

Использование неподвижной матрицы обеспечивает максимальную простоту конструкции, но требует больших масс ТАМ. Кроме этого, температура теплоносителя на выходе из аккумулятора изменяется в течение времени, что требует дополнительной системы поддержания постоянных параметров путем перепуска.

В настоящее время рассматривается несколько характерных технических решений таких аккумуляторов тепла (рис. 3).

 

Рис.3. Основные типы ТА с твердым ТАМ: а—с пористой матрицей; б, в — канальный; г, д — подземный с вертикальными и горизонтальными каналами; е — в водоносном горизонте; 1— вход теплоносителя; 2— теплоизоляция; 3 – разделительная решетка; 4 — ТАМ; 5 — опоры; 6— выход теплоносителя; 7 — разделении потоков; 8 -- индуктор; 9– водоносный слой; 10 – водонепроницаемый слой.

 

Аккумуляторы с пористой матрицей применяются, как правило, в системах гелиотеплоснабжения. Такие ТА проектируются, как правило, с минимальным гидравлическим сопротивлением, что позволяет использовать принцип свободно-конвективного переноса. При заряде горячий газ подается в верхнюю часть ТА и, охлаждаясь, опускается в его нижнюю часть.

При заряде горячий газ подается в верхнюю часть ТА и, охлаждаясь, опускается в его нижнюю часть. При разряде холодный газ подается в нижнюю часть ТА, нагревается и выходит из верхней его части. Таким образом, можно спроектировать систему теплоснабжения, требующую только источник тепловой энергии (например, Солнце). Известна разработка нагревателя газа для газодинамического лазера, использующая принцип «пористой» матрицы, нагреваемой электроэнергией.

Канальный ТА широко применяется в системах электро–теплоснабжения, использующих внепиковую энергию. Теплоаккумулирующий материал (шамот, огнеупорный кирпич и т. п.) нагревается в периоды минимального потребления электроэнергии, что позволяет выравнивать графики загрузки электростанций. Обогрев помещений производится воздухом, нагреваемым в процессе прохождения через матрицу.

Особым типом канального ТА с твердым ТАМ являются тепловые графитовые аккумуляторы, используемые в качестве источника энергии в автономных энергоустановках. Температура их нагрева может достигать 3500 К, что обеспечивает хорошие массогабаритные характеристики установки.

Подземные аккумуляторы тепла с вертикальными каналами используются, как правило, для аккумуляции сезонного тепла. Длина одного канала таких аккумуляторов может достигать ста метров, а общая энергоемкость тысяч киловатт-часов. Подземные аккумуляторы тепла с горизонтальными каналами применяются для аккумуляции тепла в течение нескольких месяцев.

Тепловые аккумуляторы с подвижной матрицей выполняются, как правило, в виде вращающегося регенератора, устройств с падающими шарами и т. п. Такие аккумуляторы применяются в устройствах регенерации тепловой энергии и вследствие малой продолжительности рабочего цикла имеют небольшие габариты; ТА с подвижной матрицей могут обеспечивать постоянную температуру газа на выходе. Основные характеристики наиболее часто применяемых твердых ТАМ приведены втабл. 3

 
Таблица 3 Основные свойства твердых ТАМ

 

ТАМ

Температура оС

Плотность, кгм3

Удельная теплоёмкость, кДжкг

коэффициент

       

Теплопроводности, Втм*К

Температуропроводности 10-6 м2с

Щебень

400

2500-2800

0,92

2,2-3,5

0,85-1,5

феолит

400

3900

0,92

2,1

2,5

бетон

400

1900-2000

0,84

1,2-1,3

0,76

шамот

1700

1830-2200

1,1-1,3

0,6-1,3

0,21-0,65

графит

3500

1600-2000

2,0

40-170

12-54

Кирпич красный

1000

1700-1800

0,88

0,7-0,8

0,5

песок

–––

1460-1600

0,8-1,5

0,3-0,2

––


 

С целью уменьшения амплитуды колебаний температуры холодного газа используется одновременная работа нескольких аккумуляторов, разряжаемых на общий канал. В этом случае амплитуда колебаний уменьшается пропорционально количеству работающих ТА. Очевидно, что для достижения постоянной температуры газа необходимо бесконечное их количество, что реализуется во вращающемся регенераторе.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Глава 4. Аккумуляторы тепла, основанные на фазовых переходах

 

Использования теплоты плавления для аккумулирования тепла обеспечивает высокую плотность запасаемой энергии при использовании небольших перепадов температур и достаточно стабильную температуру на выходе из ТА. Однако большинство ТАМ в расплавленном состоянии являются коррозионноактивными веществами, в основном имеют низкий коэффициент теплопроводности, изменяют объем при плавлении и относительно дороги. В настоящее время известен широкий спектр веществ, обеспечивающих температуру аккумуляции от 0 до 1400 °С. Следует отметить, что широкое применение ТА с плавящимся ТАМ сдерживается прежде всего соображениями экономичности создаваемых установок.

При рабочих температурах до 120°С рекомендуется применение кристаллогидридов неорганических солей, что связано в первую очередь с использованием природных веществ в качестве ТАМ. Для реального применения рассматриваются только вещества, не разлагающиеся при плавлении, либо растворяющиеся в избыточной воде, входящей в состав ТАМ. С целью обеспечения кристаллизации с малым переохлаждением жидкости необходимо применение веществ, являющихся первичными центрами кристаллизации. Для блокирования разделения фаз либо применяются загустители, либо интенсивное перемешивание в процессе теплообмена. К настоящему времени разработаны рекомендации, обеспечивающие работоспособность ТАМ на основе кристаллогидратов в течение нескольких тысяч циклов заряд — разряд. К числу недостатков кристаллогидратов следует отнести также их повышенную коррозионную активность.

Таблица 4.1 Основные свойства ТАМ на основе кристаллогидридов.

 

Материал

Чистая соль

Рабочая смесь

 

Минеральное сырье

 

Тпл, Со

Qпл, кДж/кг

Ρтв 103 кг/м3

Ρж 103 кг/м3

ТАМ %

Вода %

Тпл оС

Qпл, кДж/кг

 

CaCl·6H2O

29.7

170

1.71

1.52

         

Na2SO4·10H2O

32,4

251

1,46

1,48

68,2

31,8

31

244

Глауберова соль

Na2S2O3·5H2O

48

210

1,6

         

Гипосульфит натрия

CH3COONa·3H2O

58,2

260

1,45

 

90-95

10-5

52-58

290-220

 

MgCl2·6H2O

116

165

1,57

         

Бишофит


 

Использование органических веществ практически полностью снимает вопросы коррозионного разрушения корпуса, обеспечивает высокие плотности запасаемой энергии, неплохие экономические показатели. Разработанные к настоящему времени способы поверхностной обработки органических веществ (крафт — полимеризация — модификация и т. п.) позволяют создавать конструкции без явно выраженной поверхности теплообмена. Однако в процессе работы органических веществ происходит снижение теплоты плавления вследствие разрушения длинных цепочек молекул полимеров. Применение органических материалов требует развитых поверхностей теплообмена вследствие низкого коэффициента теплопроводности ТАМ.

Таблица 4.2 Основные свойства плавящихся органических ТАМ.

 

Материал

Температура плавления,оК

Теплота плавления Q, кДжкг

Удельная теплоемкость

Плотность кгм3

Коэффициент теплопроводности λтв,Вт(м·К)

вязкость

10-3 Па·с

       

Ρтв

Ρж

   

полиэтиленгликоль

293-298

146

2,26

 

1100

0,16

11,5

октадекан

301

244

2,18

744

 

0,15

3,9

Парафин 46-48

320

209

2,08

800

 

0,34

3

нафталин

353

   

1170

   

0,8

ацетамин

355

   

1160

     

 

При более высоких рабочих температурах применяются, как правило, соединения и сплавы легких металлов. Существенными недостатками соединений металлов принято считать низкий коэффициент теплопроводности, коррозионную активность, изменение объема при плавлении.

 

 

 

 

 

 

 

 

 

 

 

Глава 5. Конструкция ТА фазового перехода

 

Размещение ТАМ в капсулах рис. 4, а обеспечивает высокую надежность конструкции, позволяет создавать развитую поверхность теплообмена, компенсировать (при использовании гибких капсул) изменения объема в процессе фазовых переходов. Однако вследствие низкой теплопроводности ТАМ необходимо большое число капсул малого размера, что приводит к большой трудоемкости изготовления ТА, недостаточно рациональному использованию объема (для цилиндрических капсул), малой жесткости конструкции (для плоских капсул). Особенно целесообразно применение капсульных ТА в случаях малых тепловых потоков с теплообменной поверхности.

 

Рис.4 Основные типы тепловых аккумуляторов фазового перехода: а — капсульный; 6 —. кожухотрубный; в, г — со скребковым удалением ТАМ; д — с ультразвуковым удалением ТАМ; е, ж — с прямым контактом и прокачкой ТАМ; з, и — с испарительно-конвективным переносом тепла; 1 —жидкий ТАМ; 2 —твердый ТАМ; 3 — поверхность теплообмена; 4 — корпус ТА; а — теплоноситель; 6 — граница раздела фаз; 7 — частицы твердого ТАМ; 4— промежуточный теплообменник; 9— паровое и жидкостное пространства для теплоносителя.

 

Расположение ТАМ в межтрубном пространстве кожухотрубного теплообменника (рис. 4,б) обеспечивает рациональное использование внутреннего объема ТА и применение традиционной технологии изготовления теплообменных аппаратов. Однако при такой конструкции затруднено обеспечение свободного расширения ТАМ, вследствие чего понижена надежность аккумулятора в целом. Обеспечение динамических характеристик аккумулятора затруднено известными прочностными ограничениями шага трубок в трубной доске.

Наиболее технологически сложным и дорогим элементом ТА традиционной конструкции является теплообменная поверхность, определяющая мощность теплового аккумулятора. Вследствие низких коэффициентов теплопроводности большинства плавящихся ТАМ в настоящее время предложены различные способы уменьшения поверхности теплообмена путем соскребания ТАМ, ультразвукового либо электрогидравлического разрушения затвердевшего ТАМ. Указанные способы позволяют существенно снизить величину теплообменной поверхности, но существенно увеличивают нагрузки на конструктивные элементы аккумулятора. Известно, что лучшим вариантом теплообменной поверхности является ее полное отсутствие, т. е. непосредственный контакт теплоаккумулирующего материала и теплоносителя. Очевидно, что в этом случае необходимо подбирать как теплоаккумулирующие материалы, так и теплоносители по признакам, обеспечивающим работоспособность конструкций.

Информация о работе Современные методы аккумулирования тепла энергии солнца