Автор работы: Пользователь скрыл имя, 31 Марта 2012 в 21:50, курсовая работа
Энергетика - базовая отрасль, влияющая на состояние всей экономики. Вместе с тем она является одним из основных потребителей первичных энергетических ресурсов и оказывает заметное влияние на окружающую среду. На сегодняшний день имеются широкие возможности энергетического использования газообразного и жидкого топлива. Исключительная народнохозяйственная ценность этих видов топлива требует изыскания наиболее рациональных схем энергетических установок, причем многообразие потребителей и особенности экономических районов заведомо не позволяет ограничиться разработкой какой либо одной оптимальной схемы.
Постоянный рост в мире производства электроэнергии с доминирующей ролью тепловых электростанций, сжигающих органическое топливо, стоимость которого неуклонно растет, обусловливает необходимость повышения эффективности топливоиспользования на ТЭС, что возможно только на основе более совершенных технологических и технических решений преобразования энергии топлива в электрическую (и тепловую).
Введение: 3
Глава 1. История газотурбинных установок. 4
1.1 Из истории газотурбинных установок. 4
Глава 2. Обзор существующих циклов энергетических систем. 7
2.1.Описание газотурбинных установок. 7
2.1.1.Основные достоинства и недостатки газотурбинных установок 7
2.1.2.Недостатки газотурбинных установок: 8
2.2. Циклы газотурбинных установок. 8
2.2.1.ГТУ с подводом теплоты при постоянном давлении. 9
2.2.2.Цикл ГТУ с подводом теплоты при постоянном объеме 10
2.2.3. Сравнение эффективности циклов при P= const и V = const. 11
2.2.4. Цикл ГТУ с регенерацией теплоты 11
2.2.5.Сравнение циклов с регенерацией и без регенерации теплоты. 13
2.3. Циклы паротурбинных установок: 13
2.3.1. Цикл Ренкина 14
2.4. Парогазовый цикл. 15
2.4.1. Схема и цикл парогазовой установки. 16
2.4.2. Роль парогазовых циклов в современной энергетике: 17
Глава 3. Расчет параметров циклов энергогенерирующих установок. 18
3.1.Термодинамический расчет цикла газотурбинной установки. 18
3.2. Расчет цикла паротурбинной установки. 20
3.3. Расчет цикла ПГУ. 21
3.3.1. Определение электрической мощности ГТУ и ее технико-экономические показатели. 22
3.3.2. Технико-экономические характеристики ПГУ. 22
Глава 4. Сгорание топлива в камере ГТУ. 23
4.1. Виды топлива. 23
4.2.Горение топлива. 24
4.2.1.Расчет горения нефти: 24
4.2.2. Расчет горения природного газа. 25
4.2.3. Расчет горения мазута. 26
Заключение: 27
Список литературы: 27
Балтийский Государственный
Технический Университет «
Кафедра К6
«Ракетно-космическая и авиационная теплотехника и плазмогазодинамика»
Курсовой проект на тему:
«Проектирование установки парогазового цикла»
Этап 1.
Выполнила: ст. гр. М481
Григорьева И.В.
Руководитель проекта: Профессор
Сахин В.В.
Санкт-Петербург
2011 год
Оглавление
Введение: 3
Глава 1. История газотурбинных установок. 4
1.1 Из истории газотурбинных установок. 4
Глава 2. Обзор существующих циклов энергетических систем. 7
2.1.Описание газотурбинных установок. 7
2.1.1.Основные достоинства и недостатки газотурбинных установок 7
2.1.2.Недостатки газотурбинных установок: 8
2.2. Циклы газотурбинных установок. 8
2.2.1.ГТУ с подводом теплоты при постоянном давлении. 9
2.2.2.Цикл ГТУ с подводом теплоты при постоянном объеме 10
2.2.3. Сравнение эффективности циклов при P= const и V = const. 11
2.2.4. Цикл ГТУ с регенерацией теплоты 11
2.2.5.Сравнение циклов с регенерацией и без регенерации теплоты. 13
2.3. Циклы паротурбинных установок: 13
2.3.1. Цикл Ренкина 14
2.4. Парогазовый цикл. 15
2.4.1. Схема и цикл парогазовой установки. 16
2.4.2. Роль парогазовых циклов в современной энергетике: 17
Глава 3. Расчет параметров циклов энергогенерирующих установок. 18
3.1.Термодинамический расчет цикла газотурбинной установки. 18
3.2. Расчет цикла паротурбинной установки. 20
3.3. Расчет цикла ПГУ. 21
3.3.1. Определение электрической мощности ГТУ и ее технико-экономические показатели. 22
3.3.2. Технико-экономические характеристики ПГУ. 22
Глава 4. Сгорание топлива в камере ГТУ. 23
4.1. Виды топлива. 23
4.2.Горение топлива. 24
4.2.1.Расчет горения нефти: 24
4.2.2. Расчет горения природного газа. 25
4.2.3. Расчет горения мазута. 26
Заключение: 27
Список литературы: 27
Энергетика - базовая отрасль, влияющая
на состояние всей экономики. Вместе
с тем она является одним из
основных потребителей первичных энергетических
ресурсов и оказывает заметное влияние
на окружающую среду. На сегодняшний
день имеются широкие возможности
энергетического использования
газообразного и жидкого
Постоянный рост в мире производства
электроэнергии с доминирующей ролью
тепловых электростанций, сжигающих
органическое топливо, стоимость которого
неуклонно растет, обусловливает
необходимость повышения
Стратегическим направлением развития мировой энергетики является внедрение парогазовых технологий (ПГУ) при выработке электроэнергии и тепла. Это направление дает возможность существенно повысить КПД конденсационных установок с 38%-40% до 55%-60%.
В электроэнергетике для вариантов использования топлива, пригодного для ГТУ, разработан и уже нашел практическое применение парогазовый цикл при сочетании предвключенных газовых турбин и парового контура, содержащих котел–утилизатор, работающий на отработанных в ГТУ газах, и паровую турбину, что в целом повышает эффективность практически в два раза.
Перенесение его на силовой агрегат
автомобиля позволит повысить топливную
экономичность. Большая часть процессов,
составляющих комбинированный цикл,
проверена на практике не только на
крупных энергетических газотурбинных
агрегатах, но и на дизельных судовых
установках, а также на поршневых
двигателях тракторного и автомобильного
типов. Это дает основание утверждать,
что рассмотренный метод может
стать базой для существенного
повышения качественных характеристик
автомобильных силовых
ПГУ особенно актуальны для отечественной электроэнергетики, которая почти на 90% зависит от привозного топлива Рост производства электроэнергии нужно рассматривать еще и с точки зрения наращивания экспортного потенциала в качестве важной валютной составляющей совокупного дохода. С этих позиций назрела необходимость внедрения современных ПГУ или надстройки паровой части в установленных ГТУ. Это позволяет значительно снизить удельные расходы топлива на выработку тепла и электроэнергии, сократить эксплуатационные расходы и численность персонала, существенно улучшить экологическую обстановку.
Идея использования энергии горячих дымовых газов для совершения механической работы известна человечеству очень давно. По имеющимся данным она была высказана и реализована еще Героном Александрийским, которым был построен прибор, где для целей вращения использовалась энергия восходящего горячего газового потока.
Позднее, в ХV веке, Леонардо да Винчи была высказана идея "дымового вертела" для обжарки туш животных. Принцип действия "дымового вертела" совершенно подобен принципу действия ветряной мельницы. "Дымовой вертел" размещался в дымоходе, и вращение его создавалось дымовыми газами, проходившими через колесо с насаженными на него лопастями (рис.1).
Подобное устройство было осуществлено в средние века. Первый патент на проект газотурбинной установки был выдан в 1791 году в Англии Джону Барберу. В патенте Барбера, хотя и в примитивной форме, были представлены все основные элементы современных газотурбинных установок: имелись воздушный и газовый компрессоры, камера горения и активное турбинное колесо. Для работы предполагалось использовать продукты перегонки угля, дерева или нефти. Для понижения температуры рабочих газов предполагалось впрыскивание воды в камеру горения.
В XIX веке продолжались попытки многочисленных
ученых и изобретателей различных
стран создать газотурбинную
установку, пригодную для практического
использования. Однако эти попытки
были обречены на неудачу вследствие
низкого уровня науки и техники.
Металлы, которые могли бы длительное
время противостоять
В России также предпринимались попытки создать газотурбинную установку, в частности, инженер-механиком русского военно-морского флота П.Д.Кузьминским в 1897 году. Он разработал, а затем и осуществил небольшую газопаровую турбинную установку, состоявшую из камеры сгорания, в которую кроме воздуха и топлива, подавался водяной пар, получавшийся в змеевике, окружавшем камеру. Газопаровая смесь затем поступала в многоступенчатую турбину радиального типа (рис.2).
Горение топлива (керосина) происходило при постоянном давлении порядка 10 кгс/см2. При испытаниях, несмотря на принятые меры, камера горения быстро прогорала и выходила из строя. Создать длительно действующую установку не удалось.
В период 1900 - 1904 гг. в Германии инженером Штольце была построена и испытана газотурбинная установка, в которой понижение температуры рабочих газов перед поступлением их в турбину осуществлялось за счет большого избытка воздуха, подававшегося компрессором в камеру горения. Испытания установки не дали положительных результатов. Вся мощность, развивавшаяся газовой турбиной, расходовалась только на привод компрессора. Полезная мощность установки была равна нулю.
В 1905 - 1906 гг. французскими инженерами Арманго и Лемалем были построены две газотурбинные установки, работавшие на керосине.
Снижение температуры газов перед турбинами примерно до 560 °С достигалось впрыскиванием воды. Мощность газовой турбины первой установки равнялась 25 л.с., второй - 400 л.с. От второй установки впервые была получена полезная мощность. КПД установки был чрезвычайно низок и не превышал 3 ¸ 4 %, хотя КПД собственно турбины достигал уже 70 ¸ 75 %.
Над созданием газотурбинных
В общем же можно сказать, что те немногие, фактически работавшие газотурбинные установки, которые были построены за рассмотренный период времени, либо обладали низким КПД, либо были конструктивно очень сложны и мало надежны в эксплуатации, что, естественно, являлось препятствием для их практического использования.
Реальное применение газовых турбин началось в 50-х годах XX века.
Первые практически
Первая газотурбинная
Позднее, в 50-х годах, в Швейцарии же была построена и эксплуатировалась газотурбинная электростанция в местечке Бецнау с турбоагрегатами мощностью в 12 и 25 МВт при начальной температуре газа 650 °С.
Тепловая схема установок была усложнена, что обеспечило более высокий КПД.
С 50-х годов XX века начинается быстрое развитие газотурбостроения во всех странах, имевших развитую турбостроительную промышленность.
В стационарном применении газотурбинных установок наметились два основные направления:
использование на магистральных газопроводах и
для выработки электроэнергии на электростанциях.
На газопроводах газотурбинные агрегаты применяются для привода компрессоров, перекачивающих газ.
На отечественных заводах (НЗЛ, УТЗ, ЛМЗ) был освоен выпуск подобных турбонагнетателей первоначально мощностью 4 МВт, затем 5, 6, 10, 16, 25 МВт и более мощных.
Суммарная мощность газотурбинных установок, выпущенных для этих целей только заводами Советского Союза и России, превышает многие миллионы кВт.
Газотурбинные установки на электростанциях, как основной тип двигателя для привода электрогенераторов, используются главным образом в тех районах, где имеется природный газ, а так же, учитывая их возможности к быстрому пуску, для покрытия пиковых нагрузок, возникающих в энергосистемах в относительно кратковременные периоды наибольшего потребления энергии. На ЛМЗ, в частности, освоен выпуск турбоагрегатов мощностью 100 МВт.
Предпринимались попытки применения
газотурбинных агрегатов в
Однако работы, проводившиеся в
течение ряда лет, показали, что путь
использования в газотурбинных
агрегатах низкокалорийных
Еще одно из направлений по применению
газотурбинных установок для
выработки электроэнергии - использование
авиационных газотурбинных
Стандартные обозначения газотурбинных установок, принятые в отечественной практике (как пример): ГТ-35-770-2, ГТ-50-800, ГТ-100-750-1, ГТ-45-950. Здесь первые цифры - мощность в МВт, вторые - температура газа перед турбиной, °С и третья - номер модели.
В газотурбостроении промышленно развитых стран, так же, как и в паротурбостроении, практически существует единый мировой уровень по тенденциям развития, мощностям турбоагрегатов и их параметрам.
Информация о работе Проектирование установки парогазового цикла