Автор работы: Пользователь скрыл имя, 30 Октября 2014 в 20:04, реферат
Начнем с проблемы, которая привлекает сейчас наибольшее внимание физиков, над которой, пожалуй, работает наибольшее количество исследователей и исследовательских лабораторий во всем мире, – это проблема атомного ядра и, в частности, как наиболее актуальная и важная ее часть – так называемая проблема урана.
Позвольте остановить ваше внимание на одной интересной стороне этих материалов. Раньше твердое тело представлялось в таком виде. Атомы соединяются в одну систему, соединяются не как попало, а каждый атом с соседним атомом сочетается в таких положениях, на таких расстояниях, при которых их энергия стала бы наименьшей.
Если это верно для одного атома, то это верно для всех остальных. Поэтому все тело в целом многократно повторяет одни и те же расположения атомов на строго определенном расстоянии друг от друга, так что получается решетка из правильно расположенных атомов. Получается кристалл, обладающий вполне определенными гранями, определенными углами между гранями. Это – проявление внутреннего порядка в расположении отдельных атомов.
Однако эта картина является только приближенной. В действительности тепловое движение и реальные условия роста кристалла приводят к тому, что отдельные атомы срываются со своих мест на другие места, часть атомов выходит наружу и удаляется в окружающую среду. Это – отдельные нарушения в отдельных местах, но они приводят к важным результатам.
Оказывается, достаточно увеличить количество кислорода, заключающегося в закиси меди, или уменьшить количество меди на 1%, чтобы электропроводность увеличилась в миллион раз и резко изменились бы все остальные свойства. Таким образом, небольшие изменения в строении вещества влекут за собою громадные изменения в их свойствах.
Естественно, изучив это явление, можно воспользоваться им, чтобы сознательно изменять полупроводники в желательную для нас сторону, изменять их электропроводность, тепловые, магнитные и другие свойства так, как нужно для решения данной задачи.
На базе квантовой теории и изучения как нашего лабораторного, так и производственного опыта заводов мы пытаемся решать технические задачи, связанные с полупроводниками.
В технике полупроводники получили первое применение в выпрямителях переменного тока. Если медную пластинку окислить при высокой температуре, создав на ней закись меди, то такая пластинка обладает очень интересными свойствами. При прохождении тока в одном направлении сопротивление ее невелико, получается значительный ток. При прохождении же тока в обратном направлении она создает громадное сопротивление, и ток в обратном направлении оказывается ничтожно мал.
Это свойство было использовано американским инженером Грондалем для того, чтобы «выпрямить» переменный ток. Переменный ток 100 раз в секунду меняет свое направление; если поставить на пути тока такую пластинку, то заметный ток проходит только в одном направлении. Это мы и называем выпрямлением тока.
В Германии для этой цели стали применять железные пластинки, покрытые селеном. Результаты, полученные в Америке и Германии, были воспроизведены у нас; была разработана технология заводского изготовления всех выпрямителей, которыми пользуется американская и германская промышленность. Но, конечно, основная задача заключалась не в этом. Нужно было, использовав наши знания полупроводников, попробовать создавать лучшие выпрямители.
Это нам до некоторой степени удалось. Б.В. Курчатов и Ю.А. Дунаев сумели создать новый выпрямитель, который идет значительно дальше, чем то, что известно в заграничной технике. Выпрямитель из закиси меди, представляющий собой пластинку шириной примерно 80 мм и длиной 200 мм, выпрямляет токи порядка 10–15 А.
Медь – дорогой и дефицитный материал, а между тем для выпрямителей нужны многие и многие тонны меди.
Выпрямитель Курчатова – небольшая алюминиевая чашечка, в которую насыпается полграмма сернистой меди и которая закрывается металлической пробкой со слюдяной изоляцией. Вот и все. Такой выпрямитель не надо греть в печах, и он выпрямляет токи порядка 60 А. Легкость, удобство и дешевизна дают ему преимущество перед типами, существующими за границей.
В 1932 г. Ланге в Германии заметил, что та же самая закись меди обладает свойством создавать при освещении электрический ток. Это твердый фотоэлемент. Он в отличие от других создает ток без всяких батарей. Таким образом, мы получаем электрическую энергию за счет световой – светоэлектрическую машину, но количество получаемой электроэнергии очень мало. В этих фотоэлементах только 0.01–0.02% световой энергии превращается в энергию электрического тока, но все-таки Ланге построил маленький моторчик, который вертится, если ею выставить на солнце.
Спустя несколько лет в Германии был получен селеновый фотоэлемент, который дает примерно в 3–4 раза больше тока, чем медно-закисный, и коэффициент полезного действия которого достигает 0.1%.
Мы попытались построить еще более совершенный фотоэлемент, который и удалось осуществить Б.Т. Коломийцу и Ю.П. Маслаковцу. Их фотоэлемент дает ток в 60 раз больше, чем медно-закисный, и в 15–20 раз больше, чем селеновый. Он интересен еще в том отношении, что дает ток от невидимых инфракрасных лучей. Чувствительность его настолько велика, что его оказалось удобным применить для звукового кино вместо тех видов фотоэлементов, которые применялись до сих пор.
В существующих фотоэлементах имеется батарея, которая создает ток и без освещения; это вызывает в громкоговорителе частое потрескивание и шумы, портящие качество звука. Наш же фотоэлемент никакой батареи не требует, электродвижущую силу создает освещение; если нет света, то и току неоткуда взяться. Поэтому звукоустановки, работающие на этих фотоэлементах, дают чистый звук. Установка удобна и в других отношениях. Так как нет батареи, то не надо подводить провода, отпадает ряд дополнительных устройств, фотокаскад усиления и т.д.
По-видимому, для кино эти фотоэлементы представляют некоторые преимущества. Примерно год, как такая установка работает в показательном театре в Ленинградском Доме кино, а сейчас, вслед за этим, главные кинотеатры на Невском проспекте – «Титан», «Октябрь», «Аврора» переходят на эти фотоэлементы.
Позвольте к этим двум примерам присоединить третий, еще совсем не законченный, – это использование полупроводников для термоэлементов.
Термоэлементами мы пользуемся давно. Их изготовляют из металлов для измерения температуры и лучистой энергии светящихся или нагретых тел; но обыкновенно токи от этих термоэлементов чрезвычайно слабы, их измеряют гальванометрами. Полупроводники дают гораздо большую ЭДС, чем обычные металлы, и поэтому представляют для термоэлементов особые преимущества, далеко еще неиспользованные.
Мы сейчас пытаемся применять изучаемые нами полупроводники для термоэлементов и достигли некоторых успехов. Если нагреть одну сторону изготовленной нами небольшой пластинки на 300–400°, то она дает ток порядка 50 А и напряжение около 0,1 В.
Давно известно, что от термоэлементов можно получать и большие токи, но по сравнению с тем, что удалось достигнуть в этом направлении за границей, в Германии например, наши полупроводники дают значительно больше.
Этими тремя примерами не ограничивается техническое значение полупроводников. Полупроводники представляют собой основные материалы, на которых строится автоматика, сигнализация, телеуправление и т.д. Вместе с ростом автоматики растут и разнообразные применения полупроводников. Однако и из этих трех примеров, мне кажется, можно видеть, что развитие теории оказывается чрезвычайно благоприятным для практики.
Но и теория получила такое значительное развитие только потому, что мы ее развивали на почве решения практических задач, шагая в ногу с заводами. Громадный масштаб технического производства, неотложные нужды, которые выдвигает производство, чрезвычайно стимулируют теоретическую работу, заставляя во что бы то ни стало выходить из затруднений и решать задачи, которые без этого, вероятно, были бы оставлены.
Если перед нами нет технической задачи, мы, изучая заинтересовавшее нас физическое явление, пытаемся в нем разобраться, проверяя свои представления лабораторными опытами; при этом иногда удается найти правильные решения и убедиться в том, что они верны. Тогда мы печатаем научную работу, считая свою задачу законченной. Если? ке теория не оправдывается или обнаруживаются новые явления, в нее не укладывающиеся, мы пытаемся развить и видоизменить теорию. Не всегда удается охватить всю совокупность опытного материала. Тогда мы считаем работу неудавшейся и не публикуем свои исследования. Часто, однако, в этих непонятых нами явлениях и лежит то новое, что не укладывается в теорию, что требует отказа от нее и замены совершенно иным подходом к вопросу и иной теории.
Массовое производство не терпит недочетов. Ошибка сейчас же скажется на появлении капризов в производстве. Пока какая-нибудь сторона дела не понята, технический продукт никуда не годится, его нельзя выпускать. Мы во что бы то ни стало должны узнать все, охватить и те процессы, которые не нашли еще объяснения в физической теории. Мы не можем остановиться, пока не найдем объяснения, а тогда перед нами законченная, гораздо более глубокая теория.
Для сочетания теории и практики, для расцвета науки нигде нет таких благоприятных условий, как в первой стране социализма.