Проблемы современной физики

Автор работы: Пользователь скрыл имя, 30 Октября 2014 в 20:04, реферат

Краткое описание

Начнем с проблемы, которая привлекает сейчас наибольшее внимание физиков, над которой, пожалуй, работает наибольшее количество исследователей и исследовательских лабораторий во всем мире, – это проблема атомного ядра и, в частности, как наиболее актуальная и важная ее часть – так называемая проблема урана.

Прикрепленные файлы: 1 файл

реферат.docx

— 51.74 Кб (Скачать документ)

Быстрое развитие обеспечивается возможностью активного воздействия на изучаемый объект. Мы стали узнавать атомное ядро тогда, когда мы научились активно егo видоизменять. Это удалое й. примерно 20 лет назад знаменитому английскому физику Резерфорду.

Давно было известно, что при встрече двух атомных ядер можно было ожидать воздействия ядер друг на друга. Но как осуществить такую встречу? Ведь ядра заряжены положительно. При приближении друг к другу они отталкиваются, размеры их настолько малы, что силы отталкивания достигают громадной величины. Нужна атомная энергия, чтобы, преодолев эти силы, заставить одно ядро встретиться с другим. Чтобы накопить такую энергию, нужно было заставить ядра пройти разность потенциалов порядка 1 млн. В. И вот, когда в 1930 г. получили пустотные трубки, в которых удалось создавать разности потенциалов больше 0.5 млн. В, они сейчас же были применены для воздействия на атомные ядра.

Надо сказать, что такие трубки были получены вовсе не физикой атомного ядра, а электротехникой в связи с задачей передачи энергии на большие расстояния.

Давней мечтой электротехники высоких напряжений является переход с переменного тока на постоянный. Для этого нужно уметь превращать высоковольтные переменные токи в постоянные и наоборот.

Вот для этой-то цели, еще и сейчас недостигнутой, и были созданы трубки, в которых ядра водорода проходили свыше 0.5 млн. В и получали большую кинетическую энергию. Это техническое достижение сейчас же было использовано, и в Кембридже была поставлена попытка направить эти быстрые частицы в ядра различных атомов.

Естественно, опасаясь, что взаимное отталкивание не позволит ядрам встретиться, взяли ядра с наименьшим зарядом. Самый малый заряд у протона. Поэтому в пустотной трубке поток ядер водорода пробегал разность потенциалов до 700 тыс. В. В дальнейшем разрешите энергию, которую получает заряд электрона или протона, пройдя 1 В, называть электронвольтом. Протоны, получившие энергию порядка 0.7 млн. эВ, были направлены на препарат, содержащий литий.

Литий занимает третье место в периодической системе. Атомный вес его 7; он имеет 3 протона и 4 нейтрона. Когда еще один протон, попадая в ядро лития, присоединится к нему, мы получим систему из 4 протонов и 4 нейтронов, т.е. четвертый элемент – бериллии с атомным весом 8. Такое ядро бериллия распадается па две половины, каждая ил которых имеет атомный пег 4, а заряд 2, т.е. представляет собою ядро гелия.

Действительно, это и было наблюдено. При бомбардировке лития протонами вылетали ядра гелия; причем можно обнаружить, что одновременно вылетают в противоположные стороны 2 б-частицы с энергией по 8.5 млн. эВ.

Мы можем сделать из этого опыта сразу два вывода. Во-первых, из водорода и лития мы получили гелий. Во-вторых, затратив один протон с энергией в 0.5 млн. эВ (а потом оказалось достаточным и 70 000 эВ), мы получили 2 частицы, каждая из которых имеет по 8.5 млн. эВ, т.е. 17 млн. эВ.

В этом процессе мы осуществили, следовательно, реакцию, сопровождающуюся выделением энергии из атомного ядра. Затратив только 0.5 млн. эВ, мы получили 17 миллионов – в 35 раз больше.

Но откуда берется эта энергия? Конечно, закон сохранения энергии не нарушается. Как всегда, мы имеем дело с превращением одного вида энергии в другой. Опыт показывает, что таинственных, еще неведомых источников искать не приходится.

Мы уже видели, что масса измеряет запас энергии в теле. Если мы выделили энергию в 17 млн. эВ, то нужно ожидать, что уменьшился запас энергии в атомах, а значит, уменьшился их вес (масса).

До столкновения мы имели ядро лития, точный атомный вес которого 7.01819, и водород, атомный вес которого 1.00813; следовательно, до встречи имелась сумма атомных весов 8.02632, а после столкновения вылетело 2 частицы гелия, атомный вес которого 4.00389. Значит, два ядра гелия имеют атомный вес 8.0078. Если сравнить эти числа, то окажется, что вместо суммы атомных весов 8.026 осталось 8.008; масса уменьшилась па 0.018 единицы.

Из этой массы должна получиться энергия в 17.25 млн. эВ, а на самом деле измерено 17.13 млн. Лучшего совпадения мы и ожидать не вправе.

Можно ли сказать, что мы решили задачу алхимии – превращаем один элемент в другой – и задачу получения энергии из внутриатомных запасов?

Это р верно, и неверно. Неверно в практическом смысле слова. Ведь, когда мы говорим о возможности превращать элементы, то мы ожидаем, что получены такие количества вещества, с которыми можно что-то сделать. То же самое относится и к энергии.

Из отдельного ядра мы действительно получили в 35 раз больше энергии, чем затратили. Но можем ли мы сделать это явление основой технического использования внутриядерных запасов энергии?

К сожалению, нет. Из всего потока протоном приблизительно один из миллиона встретится па споем пути с ядром лития; 999 999 же других протопоп в ядро попадает, а энергию свою растратят. Дело в том, что наша «артиллерия стреляет» потоками протонов в ядро атомов без «прицела». Поэтому-то из миллиона попадет в ядро только один; общий баланс получается невыгодным. Для «бомбардировки» ядра применяется громадная машина, потребляющая большое количество электроэнергии, а в результате получается несколько вылетевших атомов, энергией которых нельзя воспользоваться даже для маленькой игрушки.

Так обстояло дело 9 лет назад. Как развивалась дальше ядерная физика? С открытием нейтронов мы получили снаряд, который может достигнуть любого ядра, так как между ними не возникнет сил отталкивания. Благодаря этому сейчас при помощи нейтронов можно осуществлять реакции по всей периодической системе. Нет ни одного элемента, который мы не могли бы превратить в другой. Мы можем, например, ртуть превратить в золото, но в ничтожных количествах. При этом обнаружилось, что различных комбинаций протонов и нейтронов очень много.

Менделеев представлял себе, что различных атомов 92, что каждой клетке соответствует один тип атомов Возьмем 17-ю клетку, занятую хлором; следовательно, хлор – .но элемент, ядро которого имеет 17 зарядов; число же в нем может равняться и 18 и 20; все это будут различно построенные ядра с различными атомными весами, но поскольку заряды их одинаковы, это – ядра одного и того же химического элемента. Мы их называем изотопами хлора. Химически изотопы неразличимы; поэтому Менделеев и по подозревал об их существовании. Число различных ядер поэтому гораздо больше, чем 92. Мы знаем сейчас примерно 350 различных устойчивых ядер, которые размещаются в 92 клетках менделеевской таблицы, и, сверх того, около 250 радиоактивных ядер, которые, распадаясь, испускают лучи – протоны, нейтроны, позитроны, электроны, г-лучи (фотоны) и т.д.

Кроме тех радиоактивных веществ, которые существуют в природе (это самые тяжелые элементы периодической системы), мы получили теперь возможность производить искусственно любые радиоактивные вещества, состоящие как из легких атомов, так и из средних и тяжелых. В частности, мы можем получить радиоактивный натрий– Если съесть поваренную соль, в которую входит радиоактивный натрий, то за перемещением атомов радиоактивного натрия мы можем проследить по всему организму. Радиоактивные атомы имеют отметку они испускают лучи, которые мы можем обнаружить и с их помощью проследить пути данного вещества в любом живом организме.

Точно так же, введя радиоактивные атомы в химические соединения, мы можем проследить всю динамику процесса, кинетику химической реакции. Прежние методы определяли окончательный результат реакции, а сейчас мы можем наблюдать весь ее ход.

Это дает мощное орудие для дальнейших исследований и в области химии, и в области биологии, и в области геологии; в сельском хозяйстве можно будет следить за движением влаги в почве, за движением питательных веществ, за переходом их к корням растений и т.д. Становится доступным то, чего до сих нор мы непосредственно видеть не могли.

Вернемся к вопросу о том, можно ли получать энергию за счет внутриядерных запасов?

Два года назад это казалось задачей безнадежной. Правда, ясно было, что за пределами известного два года назад существовала громадная область неизвестного, но

Конкретных путей использования ядерной энергии мы не видели.

В конце декабря 1938 г. было открыто явление, которое совершенно изменило положение вопроса. Это – явление распада урана.

Распад урана резко отличается от других известных нам раньше процессов радиоактивного распада, при котором из ядра вылетает какая-нибудь частица – протон, позитрон, электрон. Когда нейтрон ударяет в ядро урана, то ядро, можно сказать, разваливается на 2 части. При этом процессе, как оказалось, из ядра вылетает еще несколько нейтронов. А это приводит к следующему выводу.

Представьте себе, что нейтрон влетел в массу урана, встретил какое-нибудь его ядро, расщепил его, выделив громаднейшее количество энергии, примерно до 160 млн. эВ, и, кроме того, еще вылетают 3 нейтрона, которые встретятся с соседними ядрами урана, расщепят их, каждый снова выделит по 160 млн. эВ и снова даст по 3 нейтрона.

Легко представить себе, как этот процесс будет развиваться. Из одного расщепившегося ядра появятся 3 нейтрона. Они вызовут расщепление трех новых, каждый из которых даст еще по 3, появится 9, потом 27, потом 81 и т.д. нейтронов. И через ничтожную долю секунды этот процесс распространится на всю массу ядер урана.

Чтобы сравнить энергию, которая выделяется при процессе развала урана, с теми энергиями, которые мы знаем, позвольте привести такое сопоставление. Каждый атом горючего или взрывчатого вещества выделяет примерно 10 эВ энергии, а здесь одно ядро выделяет 160 млн. эВ. Следовательно, энергии здесь в 16 миллионов раз больше, чем выделяет взрывчатое вещество. Это значит, что произойдет взрыв, сила которого в 16 миллионов раз больше, чем взрыв самого сильного взрывчатого вещества.

Часто, особенно в паше время, как неизбежный результат империалистической стадии развития капитализма, научные достижения используются в войне для истребления людей. Но нам естественно думать об использовании их на благо человека.

Такие концентрированные запасы энергии могут быть использованы как движущая сила для всей нашей техники. Как это сделать – это, конечно, задача еще совершенно неясная. Новые источники энергии не имеют для себя готовой техники. Придется ее вновь создавать. Но прежде всего, нужно научиться добывать энергию. На пути к этому имеются еще непреодоленные трудности.

Уран занимает 92-е место в периодической таблице, имеет 92 заряда, но имеется несколько его изотопов. Один имеет атомный вес 238, другой – 234, третий – 235. Из всех этих различных уранов лавина энергии может развиться лишь в уране 235, но его только 0.7% · Почти 99% составляет уран-238, который обладает свойством по дороге перехватывать нейтроны. Нейтрон, вылетевший из ядра урана-235 раньше, чем дойдет до другого ядра урана-235, будет перехвачен ядром урана-238. Лавина не разрастется. Но от решения такой задачи так легко не отказываются. Один из выходов – изготовить такой уран, который содержал бы почти только уран-235.

До сих пор удается, однако, разделять изотопы только в количествах долей миллиграмма, а для того чтобы осуществить лавину, нужно иметь несколько тонн урана-235. От долей миллиграмма до нескольких тонн

– путь настолько далекий, что он выглядит как фантастика, а не реальная задача. Но если мы сейчас и не знаем дешевых и массовых средств разделения изотопов, то это не значит, что все пути к этому закрыты. Поэтому методами разделения изотопов сейчас усердно занимаются и советские и иностранные ученые.

Но возможен и другой способ смешения урана с веществом, мало поглощающим, но сильно рассеивающим и замедляющим нейтроны. Дело в том, что медленные нейтроны, расщепляя уран-235, не задерживаются ураном-238. Положение в данный момент таково, что простой подход не приводит к цели, но есть еще разные возможности, очень сложные, трудные, но не безнадежные. Если бы один из этих путей привел к цели, то, надо полагать, он произвел бы революцию во всей технике, которая по своему значению превысила бы появление паровой машины и электричества.

Нет оснований поэтому считать, что задача решена, что нам остается только научиться пользоваться энергией и всю старую технику можно выбросить в сорную корзину. Ничего подобного. Во-первых, мы еще не умеем извлекать энергию из урана, а, во-вторых, если бы р могли извлечь, то использование ее потребует немало времени и труда. Поскольку эти колоссальные запасы энергии в ядрах имеются, можно думать, что найдутся раньше или позже пути для их использования.

На пути к изучению проблемы урана у пас в Союзе было сделано чрезвычайно интересное исследование. Это – работа двух молодых советских ученых – комсомольца Флерова и молодого советского физика Петржака. Изучая явление расщепления урана, они заметили, что уран распадается сам по себе без всякого внешнего воздействия. Па 10 миллионов альфа-лучей, которые испускает уран, только 6 соответствуют осколкам от его распада. Заметить эти 0 частиц среди 10 миллионов других можно было только при большой наблюдательности и необычайном экспериментальном искусстве.

Два молодых физика создали аппаратуру, которая в 40 раз чувствительней, чем все до сих пор известные, и в то же время настолько точна, что они могли уверенно приписать этим 6 точкам из 10 миллионов реальное значение. Затем последовательно и систематически они проверили свои выводы и твердо установили повое явление самопроизвольный распад урана.

Эта работа замечательна не только по своим результатам, по р но настойчивости, но тонкости эксперимента, но изобретательности авторов. Если принять во внимание, что одному из них 27 лет, а другому 32, то от них можно многого ожидать. Эта работа представлена па соискание премии имени Сталина.

Явление, открытое Флеровым и Петржаком, показывает, что 92-й элемент неустойчив. Правда, для того чтобы разрушилась половина всех наличных ядер урана, потребуется 1010 лет. Но становится понятным, почему периодическая система на этом элементе заканчивается.

Более тяжелые элементы будут еще более неустойчивы. Они быстрее разрушаются и поэтому не дожили до нас. Что это так, опять-таки было подтверждено прямым опытом. Мы можем изготовить 93-й и 94-й элементы, но они живут очень недолго, менее 1000 лет.*

Поэтому, как видите, данная работа имеет принципиальное значение. Не только обнаружен новый факт, но р выяснена одна из загадок периодической системы.

Информация о работе Проблемы современной физики