Автор работы: Пользователь скрыл имя, 19 Мая 2013 в 22:42, дипломная работа
Цель работы состоит в анализе использования современных средств информационных технологий, позволяющих компьютерное моделирование процессов термического усиления объемных фазовых решеток различного периода и выявления причин их несинусоидальности, на примере четырех наиболее распространенных программ, таких как Microsoft Word, Origen, Microsoft Excel и МathCAD .
Оглавление реферата 2
Список обозначений 3
Введение 4
Глава 1 Обзор литературы 5
Глава 2 Описание программ 6
Глава 3 Физическое описание процесса диффузии 9
3.1 диффузионное усиление голографических решеток в полимерных слоях 9
3.2 реализация принципа диффузионного усиления в полимерном материале, содержащем фенантренхинон 11
Глава 4 результаты и обсуждение 13
4.1 анализ кинетических кривых усиления, полученных с помощью программ Exel и Origen 13
4.2 определение степени завершенности диффузии 17
4.3 Аппроксимация данных с помощью программы Origin 21
4.4 Построение модели профиля показателя преломления объемных решеток с помощью программы mathcad 22
Заключение 35
Список литературы к реферату 36
Интернет-ресурсы в предметной области 38
Действующий личный сайт в WWW 39
Граф (круг) научных интересов 40
Список литературы к выпускной работе 45
Приложение 46
Описанная выше модель диффузионного усиления не предполагает каких-либо изменений коэффициента усиления при различной глубине записи, т.е. к таким изменениям приводят особенности фотопроцессов в рассматриваемом материале.
Как уже было сказано, в формировании голограммы на постэкспозиционной стадии участвуют процесс присоединения радикалов к макромолекулам, а также три диффузионных процесса – диффузия молекул фенантренхинона, отвечающая за диффузионное усиление, диффузия фотоиндуцированных радикалов – регрессия скрытого изображения, и диффузия продуктов присоединения радикалов к низкомолекулярным веществам.
Решетка, связанная с непрореагировавшим фенантренхиноном, со временем «рассасывается» благодаря его диффузии. Из-за своих размеров макромолекулы практически неподвижны по сравнению с молекулами фенантренхинона, поэтому связанная с ними решетка значительно более стабильна, а в процессе диффузионной деградации противофазной ей «низкомолекулярной» решетки наблюдается усиление результирующей голограммы. Результатом диффузионного процесса будет равномерное распределение концентрации ФХ. Это позволяет нам провести фиксирование голограммы некогерентным излучением в полосе поглощения ФХ, что приведет к полному его фотопревращению.
С другой стороны, изменение амплитуды модуляции показателя преломления, согласно формуле 17, напрямую связано с изменением концентрации компонентов и с их рефракциями. Как было отмечено, рефракция – это характеристика вклада частиц в показатель преломления материала. Известно, что значения рефракций фотопродукта и фенантренхинона очень близки (Rфп=62.9; Rфх=59.3). Однако с помощью светового фиксирования голограмм на различных этапах термического усиления можно определить степень завершенности диффузионного процесса. Если на момент окончания процесса термического усиления распределение ФХ в слое однородно, то при сплошном облучении слоя в полосе поглощения ФХ, мы будем наблюдать однородное превращение ФХ в фотопродукт. Следовательно, облучение слоя не приведет к каким-либо изменениям амплитуды модуляции показателя преломления. В случае же незаконченного диффузионного процесса в ходе облучения образца некогерентным излучением мы будем наблюдать преобразование ФХ, синусоидально распределенного по объему образца, в несветочувствительный фотопродукт. При этом значения амплитуды модуляции показателя преломления уменьшатся.
В ходе эксперимента выбрали несколько голографических решеток с разной степенью завершенности диффузионного процесса усиления, который проводился при температуре 55°С, и было проведено их однородное облучение. На рисунке 11 представлены экспериментальные результаты по однородному экспонированию частично усиленного образца с периодом решетки 3 мкм.
Рис.7. Зависимость амплитуды модуляции показателя преломления ( ) от времени постэкспозиционного прогрева (t, min) для образца, облученного некогерентным излучением в полосе поглощения ФХ (концентрация фенантренхинона 2,5 мол. %, толщина регистрирующего слоя =100 мкм, период d=3 мкм)
Так как на момент однородного облучения в полосе поглощения ФХ голографическая решетка еще не была усилена до максимума, то в начальный момент фиксирования голограммы мы наблюдаем резкое уменьшение значения , в дальнейшем оно оставалось на том же уровне. Столь резкое изменение амплитуды модуляции показателя преломления свидетельствует, как уже отмечалось ранее, о неоднородном распределении ФХ по образцу, т.е. говорит нам о незавершенности диффузионного процесса к моменту однородного облучения голограммы.
На рисунке 8 можно наблюдать аналогичный процесс фиксирования голограммы, что был описан выше, только в данном случае на момент облучения голографической решетки амплитуда модуляции показателя преломления достигла своего максимального значения и практически не изменялась. На участке экспонирования мы не наблюдаем каких-либо значимых изменений , что свидетельствует о конечном однородном распределении ФХ в полимерном слое к данному моменту.
Рис.8 Зависимость амплитуды модуляции показателя преломления ( ) от времени постэкспозиционного прогрева (t, min) для образца, облученного некогерентным излучением в полосе поглощения ФХ (концентрация фенантренхинона 2,5 мол. %, толщина регистрирующего слоя =100 мкм, период d=0,8 мкм)
После экспонирования температура постэкспозиционного отжига была увеличена до 70°С для обоих образцов, что не привело к каким-либо изменениям амплитуды модуляции показателя преломления и в очередной раз подтвердило, что преобразование оставшегося непрореагировавшего фенантренхинона в несветочувствительный фотопродукт уже произошло.
Таким образом, несмотря на малую разницу в рефракциях ФХ и фотопродукта, сплошное экспонирование позволяет зафиксировать достаточные изменения амплитуды модуляции показателя преломления и установить по изменению при однородном экспонировании степень окончания диффузионного процесса. И если уже при 55°С мы смогли наблюдать голографические решетки с завершенным диффузионным усилением, то при более высоких температурах диффузия тем более завершится. Данный процесс связан с тем, что при повышении температуры полимер становится более рыхлым и количество свободного объема увеличивается. Поэтому диффузия к моменту однородного облучения завершается.
После окончания процесса термического усиления были проведены аппроксимации кинетик усиления голографических решеток с помощью программы Origin. Как уже отмечалось (рис.8), зависимость скорости усиления от периода голограмм свидетельствует о диффузионном механизме данного процесса. Поэтому для аппроксимации экспериментальных кривых использовали выражение, которое учитывает диффузию только одного компонента (ФХ):
,
где – соответствует значению амплитуды модуляции показателя преломления после окончания диффузионных процессов, – диффузионная константа скорости процесса усиления, – параметр, характеризующий вклад процесса усиления.
В ходе аппроксимации был определен параметр . Для диффузионных процессов зависимость параметра от носит линейных характер, что следует из выражения:
, (6)
где, – коэффициент диффузии. На рисунке 9 изображена зависимость от . Ее линейный вид подтверждает предположение о диффузионной природе процессов.
Рис.9. Зависимость константы скорости процесса усиления ( ) от величины, обратной квадрату периода (1/d2)
Как было отмечено выше, процесс диффузии в полимерных слоях, содержащих ФХ, можно разбить на три процесса. Это, во-первых, диффузия самих молекул фенантренхинона, отвечающая за диффузионное усиление, во-вторых - диффузия радикалов, и, наконец, диффузия продуктов присоединения радикалов к низкомолекулярным веществам. Однако в ходе экспериментов и аппроксимаций данных мы пришли к выводу, что основной вклад в диффузионный процесс вносит диффузия самих молекул ФХ. Это подтверждает возможность аппроксимации кинетик выражением с одной экспонентой, учитывающей только вклад диффузии ФХ. Вклад радикалов и низкомолекулярных продуктов в диффузионный процесс обнаружен не был. Отсутствие диффузии продуктов присоединения радикалов к низкомолекулярным веществам можно связать с хорошим подбором растворителя и высокой степенью присоединения к матрице полимера.
Экспериментально измеренные величины , достигаемые при записи, в несколько раз меньше полученных из оценок. Причина несоответствия экспериментальных и расчетных результатов может быть связана с особенностями исследуемой среды. Существенная нелинейность характеристической кривой может приводить к отклонению профиля показателя преломления от синусоидального вида, задаваемого интерференционной картиной. Это приведет к появлению более высоких порядков дифракции и снизит первого порядка. Мы регистрировали более высокие порядки дифракции при записи голографических решеток в полимерных слоях содержащие ФХ.
Для анализа их формирования и влияния на первого порядка необходимо исследовать кинетики расходования ФХ в полимерной матрице. Для этого экспериментальные слои готовили на центрифуге. Концентрация ФХ 3 мол.%, толщина регистрирующих слоев 3 ÷ 5 мкм. Толщина слоев содержащих 0,5 мол.% ФХ составляла 30÷55 мкм. Слои готовились методом полива с последующей сушкой. Экспонирование слоев проводилось излучением Ar лазера на длинах волн 488 и 514,5 нм. В процессе экспонирования проводился контроль мощности излучения. Спектральные измерения выполняли с использованием спектрофотометра Specord M 40.
На рисунке 10 представлены спектры содержащих ФХ слоев до и после экспонирования с различной экспозицией. Спектр не экспонированного слоя имеет характерные для фенантреновой структуры полосы электронного поглощения. При экспонировании исчезает длинноволновая полоса электронного поглощения с максимумом вблизи 24000 см-1, а в коротковолновой области наблюдается существенное изменение формы спектра, характерное для 9, 10- дизамещенного фенантрена. Наблюдаемое преобразование спектра при экспонировании позволяет считать, что поглощение фотопродукта в измеренном диапазоне длин волн отсутствует в области обратных длин волн больших 24000 см-1. Это позволяет определять по величине оптической плотности в этой области степень расходования ФХ.
В ходе эксперимента измерялась оптическая плотность в области >24000 см-1 на разных этапах экспонирования слоев. На рисунке 11а представлены зависимости относительной оптической плотности для =23000 от экспозиции для образцов с различной концентрацией ФХ. Различный характер уменьшения оптической плотности может быть обусловлен различным поглощением на длине волны активирующего излучения. Поэтому представим результаты в виде зависимостей оптической плотности от поглощенной энергии.
Для того, чтобы рассчитать поглощенную энергию используем выражение, следующее из закона Бугера-Ламберта-Бера:
где, – поглощенная интенсивность света,
– интенсивность падающего излучения,
D – оптическая плотность слоя для длины волны активирующего излучения.
Преобразуем выражение (7), считая слой оптически тонким, к виду:
Учитывая (31) можно записать выражение:
где, , – поглощенная единицей площади слоя энергия, и ее бесконечно малое приращение за бесконечно малое время
, – экспозиция слоя и ее бесконечно малое приращение.
Для расчета поглощенной энергии необходимо знать закономерность изменения оптической плотности в процессе экспонирования. Для того чтобы ее получить, аппроксимировали экспериментальные зависимости оптической плотности от экспозиции выражением . Выражение хорошо описывала экспериментальные зависимости при значениях параметров представленных в таблице 4.1. Проинтегрировав выражение (9) с использованием результатов аппроксимирования, проводили расчет поглощенной энергии.
Таблица 4.1
С, мол.% |
λ, нм |
|
|
|
|
|
3 |
488 |
0,0123 |
0,047 |
16,6 |
0,036 |
1,55 |
3 |
514,5 |
0,0084 |
0,033 |
2,5 |
0,046 |
40,9 |
0,5 |
488 |
0,030 |
0,3 |
3,2 |
0,07 |
18,2 |
0,5 |
514,5 |
0,032 |
0,08 |
31,0 |
0,28 |
6,3 |
На рисунке 11б представлена зависимость относительной оптической плотности слоев от поглощенной энергии для различной длины волны активирующего излучения. Производная для кривых, согласно определению, пропорциональна квантовому выходу фотореакции. Нелинейный вид кривых говорит о том, что квантовый выход меняется с ростом глубины превращения ФХ. Подобная нелинейность характерна для многих процессов протекающих в полимерных средах и может быть обусловлена наличием ряда конфигураций возбуждаемых молекул, которые в той или иной степени выгодны для протекания фотохимической реакции. В таблице 4.2 представлены квантовые выходы для начальных участков кинетик расходования ФХ. Их расчет проводился по формуле верной для оптически тонких слоев на длине волны активирующего излучения:
, (10)
где – квантовый выход фотореакции,
– производная оптической плотности по экспозиции,
– начальная концентрация ФХ в слое в моль/см3,
– оптическая плотность
слоя (на длине волны поглощения
ФХ), содержащего ФХ с
– толщина слоя в см,
Дж·с – постоянная Планка,
– скорость света в см/с,
– длина волны активирующего излучения в см.
Величина квантового выхода увеличивается при переходе от 488 нм к 514,5 для образцов с различным содержанием ФХ. Переход от 488 к 514,5 соответствует смещению в длинноволновый край полосы поглощения, поглощающие центры которого характеризуются большим межмолекулярным взаимодействием с окружением, что может увеличить вероятность протекания фотохимической реакции.